TA 00033345 -7-1501- BIF-007/D-0081-74 This Document contains 99 Pages. Сору # OPTICAL TECHNOLOGY DIVISION PROJECT MEMORANDUM PM-1519-X 19 AUGUST 1974 SENSOR SYSTEM POST FLIGHT REPORT SV-8 (S/N 011) Prepared by: Flight Operations and Evaluation Section Reviewed by: F.L. HARRIGAN, JR. Manager Flight Operations and Evaluation Approved by: W.C. COTTRELL, Manager Field Operations Department | PROJECT MEMORANDUM NUMBER: | PM-1519-X | |----------------------------|--| | PREPARED BY; | Flight Operations & Evaluation | | DATE: | 19 AUGUST 1974 | | SUBJECT: | Sensor System Post Flight Report
SV-8 (S/N OII) | | DISTRIBUTION: | SP-7 (2) Maj. Berganinni) WCFO (2) SSC/DCO R. Jones W. Keeney J. Garrish P. Petty C. Karatzas L. Weeks | | ABSTRACT: | This report outlines the flight history for the SV-8 (S/N OII) Sensor System. | | DESCRIPTORS: | Flight Report, S/N 011
Flight Operations, S/N 011 | # TABLE OF CONTENTS | | SECTION | TITLE | PAGE | |----------|--------------|--------------------------------|------| | | 1,0 | Introduction | l | | | r i.i | Mission Objective | | | ik.ya. | 1.2 | Mission Description | | | | 1.3 | Mission Highlights | 2 | | | 1.4 | Launch Configuration | 2 3 | | | 1.5 | Launch and Orbital Parameters | 3 | | **** | 1.6 | Mission Film Usage Summary | 4 | | | 2.0 | Sensor System Performance | 30 | | ····· | 2.1 | Coarse Film Path | 30 | | | 2.2 | Fine Film Path | 31 | | | 2.3 | Command and Control | 31 | | | 2.4 | Sensor System Control | 31 | | | 2.5 | Optical Bar Performance | 32 | | | 2.6 | LSFS/Focus | 32 | | | 2.7 | Instrumentation | 33 | | 10.000 | 2.8 | Pneumatics | 33 | | | 2.9 | Trand Analysis | 35 | | | 3.0 | Mission Event History | 36 | | | 3.1 | Ascent | 36 | | | 3.2 | Health Checks | 36 | | - | 3.3 | Engineering Events | 37 | | | 3.4 | Mission 1208-1 Special Events | 38 | | | 3.5 | Mission 1208-2 Special Events | 40 | | pasar*tr | 3.6 | Mission 1208-3 Special Events | 42 | | , | 3.7 | Mission 1208-4 Special Events | 44 | | | 3.8 | Solo Phase | 47 | | HOMEN, | 4.0 | Sensor System Test Objectives | 48 | | | 4.1 | Photographic Performance | 48 | | | 4.2 | Take-Up Survival Thru Recovery | 62 | | stroppy | 4.3 | Optimum Focus Determination | 65 | | : | 4.4 | Optimum OOAA Settings | 65 | | | 4.5 | Optics Thermal Profile | 66 | | treace | 5.0 | SCF Support | 74 | | | 5.1 | TUNITY for Mission 1208 | 74 | | | 5.2 | AUGTE | 74 | | | 5.3 | RTS Tapes | 75 | | | Appendix A-1 | Operational Summary | 76 | | Approx. | | , | | # LIST OF ILLUSTRATIONS | -virtumics. | FIGURE
NUMBER | TITLE | PAGE | |-------------|-------------------------------|--|----------------------| | HARMONY | 1-1
1-2
1-3 | Consumption Profiles Beta Angle History Orbit Parameters History | 5
6
7 | | omé | 1-4
1-5
1-6
1-7 | Footage Distribution with Scan Mode A Footage Distribution with Scan Mode B Frames Distribution with Scan Mode A Frames Distribution with Scan Mode B | 12
13
14
15 | | and transp. | I-8
I-9
I-10 | Ground Coverage at Scan Sectors A Ground Coverage at Scan Sectors B Footage Distribution with Solar Elevation A | 16
17
18 | | T promise | L-11
L-12
1-13
1-14 | Footage Distribution with Solar Elevation B Footage Distribution with Altitude A Footage Distribution with Altitude B Footage Distribution with Latitude A | 19
20
21
22 | | Mariney . | 1-15
1-16
1-17 | Footage Distribution with Latitude B Footage Distribution with Slit Width A Footage Distribution with Slit Width B | 23
24
25 | | in parties. | I-18:
I-19
I-20
I-21 | Target Acquisitions at Scan Sectors A Target Acquisitions at Scan Sectors B Footage Distribution with Vx/H Steps A Footage Distribution with Vx/H Steps B | 26
27
28
29 | | vow10 | (Sen) | Toologo blott barron with the coops | | | 400*734 | 4-1
4-2
4-3 | CRYSPER Predictions, 1208-1
CRYSPER Predictions, 1208-2
CRYSPER Predictions, 1208-3 | 50
51
52 | | queury, | 4-4
4-5
4-6
4-7 | CRYSPER Predictions, 1208-4 CRYSPER Predictions, Total Mid-Section Temperatures SBA TCA Temperatures | 53
54
69
70 | | -mening, | 4-8
4-9 | SBA MS Bulkhead Temperatures
SS Temperature Data | 71
73 | #### MISSION 1208 #### SENSOR SYSTEM OPERATION #### POST FLIGHT REPORT ### 1.0 INTRODUCTION ## 1.1 Mission Objective The primary objective of the Hexagon Mission is to provide high resolution photography. The intent of the eighth flight was to demonstrate functional operation of the primary satellite vehicle 93 day capability. This objective was surpassed with an active mission life of 105 days. ## 1.2 <u>Mission Description</u> The Hexagon Mission 1208 satellite vehicle was launched from VAFB, SLC-4E, at 1320PST 10 April 1974 using a Titan 3p booster vehicle. The first recovery vehicle was successfully retrieved from the water and the remaining three recovery vehicles were successfully air retrieved within predicted impact dispersions. Recoveries were Day 14, 42, 69 and 105 respectively. During testing at the launch base, a small leak was detected in the fwd camera pneumatics. The leak was determined to be between the high pressure isolation valve (HPIV) and the regulator. To prevent any loss of nitrogen gas during the mission it was decided to operate with the HPIV-A closed. The count down and launch phase were accomplished without incident. After insertion, the sensor system was successfully uncaged. The constant velocity test on Rev 2 and the health check on Rev 4 were also accomplished successfully. Operational photography began on Rev 5, Mission Op No. 4, and continued with no camera system malfunctions until Rev 980 when the system failed to execute two operations. The failure was determined to be a missing forward camera take-up Builder Roller (BR) down verification interlock signal. Operations were resumed on Rev 996 with the system configured in SCC II with BR down verification interlock disabled (VIA-DIS). When transfer to RV-4 was made, VIA was re-enabled and operated satisfactorily for the remaining portion of the mission. IL TOP SERVET With subsequent Vendor data the nitrogen gas leak, detected on the pad, was isolated to the low pressure side of the regulator and calculations showed the magnitude of the leak would not cause any significant increase in gas usage rate. On Rev 563 the HPIV-A was opened and the pneumatics system remained in it's normal configuration for the remaining portion of the mission. On Rev 1268 the system shut down due to a failure of the aft camera take-up integrator servo to reset at TU brakes off. This failure necessitated eliminating nested operations when operations were resumed on Rev 1300. The system continued to operate normally for the rest of the mission. Evaluation of the RV-I film indicated a need to change the forward camera focal plane plus 8 microns and the aft camera in-track OOAA setting minus 3 steps. These changes were made on mission ops 156 and 160 respectively. Evaluation of the RV-2 film indicated a need to change the forward camera cross-track OOAA bias by plus I step. This change was accomplished on mission OP 399. The aft camera film supply contained one 2600 foot segment of SO-255 color film and one 3000 foot segment of FE-3916 IR color film. The operational intervals associated with the color films were as follows: SO-255 OPS 723 to 747 Revs [51] to 1596 FE-3916 OPS 748 to 774 Revs [597 to 1694 The active photographic mission was terminated with RV-4 recovery on day 105 following depletion of both film supplies. A solo phase of the mission extended the vehicle life to day 109, at which time the vehicle was deboosted and re-entered. ## 1.3 Mission Highlights Sensor system highlights of the mission can be summarized as follows: - The sensor system demonstrated a functional orbital life of 105 days. - b. Both forward and aft cameras utilized 100% of their respecedive film supplies. Approximately 95% of the available pneumatics was expended. Approved for Release: 2025/06/18 C05137282 ## 1.3 Mission Highlights - Cont'd. c. The sensor system demonstrated the capability to operate satisfactorily with FE-3916 infrared color film and SO-255 color film in the aft camera. | 4 | | |------|--| | α. | | | 44.0 | | | | | | | | | | | | | | e. The general over-all mission image quality for both cameras ranged from very good to poor; the poor being attributable to atmospheric conditions, high sun angles and specular/shadowless acquisitions. Majority of the good imagery was associated with the aft camera. Figure I-I presents a graphic history of remaining system life percentages throughout the mission. ## 1.4 Launch Configuration - a. Mission Operation Number 1208. - b. Intra-range Operation No. 6245. - c. Satellife Vehicle SV-8. - d. Sensor System S/N Oll. - e. Sensor System Configuration. | | Forward Camera | Aft Camera | |-------------------|----------------|---------------------| | Filter Types | W-12 | W-12 | | Focal Length | 59.9760 in. | 59.9890 in. | | Focus Setting | 68 Microns | 25 Microns | | OOAA Setting | | | | In-Track | -4 CMD Steps | -2 CMD Steps | | Cross-Track | I CMD Step | -3 CMD Steps | | Film Type | 1414 | 1414/S0-255/FE-3916 | | Film Length | 108,854 | 106,567 | | Film Weight | 862.1 lbs. | 861.4 lbs. | | Spool Number | 5077 | 5076 | | Pneumatics Loaded | 35.4 lbs | • | ## 1.5 Launch and Orbital Parameters | | Planned | <u>Actual</u> | |---------------------|---------|---------------| | Launch Time-GMT | 2020Z | 2020Z | | Launch Time-SVT | 67.0 | 67.0 | | Inclination-degrees | 94.51 | 94.52 | ## 1.5 Launch and Orbital Parameters-Cont'd. | | Planned | <u>Actual</u> | |--------------------------|---------|---------------| | Initial Perigee-n. miles | 84.94 | 85.55 | |
Initial Apogee-n. miles | 162.22 | 164.73 | | Argument of Perigee- | | | | degrees | 149.71 | 141.36 | | Initial Period-minutes | 89.0 | 89.01 | Table 1-1 and Figures 1-2 and 1-3 define the basic orbital parameter considerations for the active mission. Forty-three orbit adjusts were performed. ## 1.6 Mission Film Usage Summary The distribution of film footage as functions of the various operating modes is presented in Figures I-4 to I-21. The mission segment to segment film usage is summarized as follows: | · | Rev Span | Camera | Recovered
Footage | |------|------------|----------------|----------------------| | RV-I | Launch-225 | Forward
Aft | 28042
28111 | | RV-2 | 226-674 | Forward
Aft | 28848
27766 | | RV-3 | 675-1116 | Forward
Aft | 25258
24225 | | RV-4 | 1117-1700 | Forward
Aft | 26827
26608 | Of this footage, the engineering and other non-intelligence operations consumed approximately 4600 and 4800 feet for the A and B sides, respectively, as summarized in the following: | IZU8 Non- | -Intelligence | | |-----------------------|----------------|------------| | | Forward Camera | Aft Camera | | Pre-Launch | 1853 | 1991 | | RV-I Engineering | 1055 | 1055 | | RV-2 Engineering | 702 | 702 | | RV-3 Engineering | 437 | 478 | | RV-4 Engineering | 596 | 605 | | Total Utilization | 4643 | 4831 | | FIIm Recovered | 108975 | 106710 | | PCT. Non-Intelligence | 4.26 | 4.53 | HX TOP SECRET 4. BETA ANGLE (DEGREES) | S X S TO THE CENTIMETER IS X 24 CM. KEUFFEL & ESSER CO. FIGURE 1 - 3 TABLE I - I # BASIC ORBITAL PARAMETERS | DAY | REV | PERIOD | PERIGEE | APOGEE | TNC | ARG/PER | B ANG | |-------------------------------------|----------------------------------|---|------------------------------|---|--------------------------------------|---|------------------------------| | 0 0 1 2 3 | NOM
1
8
24
40 | 88:59
89:00
88:58
88:54
88:50 | 85.5
85.6
85.6
85.6 | 162.9
164.5
163.5
161.0
158.4 | 94.5
94.5
94.5
94.5
94.5 | 143.4
141.0
138.9
134.8
130.6 | -2.6
-2.6
-2.3
-2.1 | | OA#1
4
5
6
OA#2
OA#3 | 46
57
73
89
94
96 | 88:57
88:53
88:48 | 85.8
85.7
85.7 | 165.1
162.7
160.1 | 94.5
94.5
94.5 | 130.9
126.7
122.7 | -1.9
-1.7
-1.5 | | 7
8
9
0A#4 | 105
121
138
143 | 88:58
88:54
88:48 | 85.4
85.4
85.3 | 161.1
158.5
155.0 | 94.5
94.5
94.5 | 147.5
143.2
138.4 | -1.3
-1.1
-0.9 | | 10
11
12
0A#5 | 156
170
186
192 | 88:58
88:53
88:47 | 85.5
85.4
85.3 | 162.4
159.5
156.5 | 94.5
94.5
94.5 | 132.0 | -0.7
-0.5
-0.3 | | 13
14
15
0A#6
0A#7 | 202
218
235
240
242 | 88:58
88:54
88:48 | 85.4
85.4
85.4 | 165.4
162.5
159.1 | 94.5
94.5
94.5 | 133.9
129.8
125.3 | -0.1
+0.1
+0.3 | | 16
17
18
0A#8 | 251
267
283
289 | 88:58
88:54
88:49 | 85.5
85.5
85.4 | 160.7
158.0
155.2 | 94.5
94.5
94.5 | 147.2
143.0
138.8 | 0.5
0.8
1.0 | | 19
20
21
0A#9 | 299
313
332
337 | 88:58
88:53
88:47 | 85.6
85.5
85.5 | 162.7
160.2
156.3 | 94.5
94.5
94.5 | 140.1
135.5
131.2 | 1.2
1.4
1.6 | | 22
23
24
0A#10
0A#11 | 348
364
380
386
388 | 88:59
88:54
88:48 | 85.7
85.6
85.4 | 166.2
163.1
159.5 | 94.5
94.5
94.5 | 133.4
129.6
125.5 | 1.9
2.1
2.3 | | 25
26
27
OA#12 | 397
413
429
434 | 88:58
88:52
88:47 | 85.6
85.4
85.2 | 160.3
157.2
154.2 | 94.5
94.5
94.5 | 147.2
142.8
138.4 | 2.5
2.7
3.0 | TABLE i - 1 Cont'd. ## BASIC ORBITAL PARAMETERS | DAY | REV | PERIOD | PERIGEE | APOGEE | INC | ARG/PER | B ANG | |--------------|------------|----------------|--------------|----------------|--------------|----------------|-------| | 28 | 445 | 88:58 | 85.6 | 162.0 | 94.5 | 141.8 | 3.2 | | 29 | 461 | 88:53 | 85.5 | 159.1 | 94.5 | 137.6 | 3.5 | | 30 | 477 | 88:47 | 85.4 | 155.8 | 94.5 | 133.3 | 3.7 | | OA#13 | 483 | 20.50 | | وست سوني ر | | | | | 31 | 494 | 88:59 | 85.4 | 165.3 | 94.5 | 135.4 | 3.9 | | 32 | 510 | 88:54 | 85.5 | 162.5 | 94.5 | 131.1 | 4.2 | | 33
0A#14. | 526 | 88:49 | 85.4 | 159.5 | 94.5 | 127.0 | 4.4 | | OA#14. | 532
534 | | | | | | | | -34 | 542 | 88:59 | 85.6 | 161.0 | 94.5 | 147.9 | 4.7 | | 35 | 558 | 88:54 | 85.5 | 158.3 | 94.5 | 143.5 | 4.9 | | 36 | 575 | 88:48 | 85.4 | 154.6 | 94.5 | 138.8 | 5.2 | | 0A#16 | 580 | 09.,0 | | ,,,,, | £ 1.5.4. | ,,,,,, | , | | 37 | 591 | 88:57 | 85.6 | 161.8 | 94.5 | 140.7 | 5.5 | | 38 | 607 | 88:51 | 85.4 | 158.6 | 94.5 | 136.5 | 5.7 | | 39 | 623 | 88:46 | 85.3 | 155.4 | 94.5 | 132.3 | 6.0 | | OA#17 | | | * | | | | | | 40 | 639 | 89:00 | 85.5 | 166.3 | 94.5 | 135.6 | 6.2 | | 41 | 655 | 88:55 | 85.5 | 163.4 | 94.5 | 131.4 | 6.5 | | 42 | 672 | 88:50 | 85.5 | 160.4 | 94.5 | 126.9 | 6.8 | | 0A#18 | 683 | | | | | | ~ . | | 43 | 688 | 88:58 | 85.8 | 166.6 | 94.5 | 128.3 | 7.0 | | 44
45 | 704
720 | 88:53
88:46 | 85.7
85.5 | 163.3
159.5 | 94.5
94.5 | 124.3
120.4 | 7.3 | | 0A#19 | 726
726 | 00:40 | ر. ره | 109.0 | 94.0 | 12U,4 | 7.6 | | 0A#19 | 728 | | | | | | | | 46 | 736 | 88:59 | 85.3 | 161.9 | 94.5 | 148.5 | 7.8 | | 47 | 753 | 88:54 | 85.4 | 158.7 | 94.5 | 143.6 | 8.1 | | 48 | 769 | 88:49 | 85.4 | 155.7 | 94.5 | 139.2 | 8.4 | | OA#21 | 774 | | | , | | * | | | 49 | 785 | 88:59 | 85.6 | 163.0 | 94.5 | 141.1 | 8.6 | | 50 | 805 | 88:49 | 85.6 | 160.1 | 94.5 | 136.9 | 8.9 | | 51 | 817 | 88:48 | 85.5 | 156.6 | 94.5 | 132.7 | 9.2 | | 0A#22 | 823 | | | | | | | | 52 | 834 | 88:58 | 85.5 | 164.9 | 94.5 | 133.8 | 9.5 | | 53 | 850 | 88:52 | 85.3 | 161.3 | 94.5 | 129.6 | 9.8 | | 54 | 866 | 88:51 | 85.1 | 157.7 | 94.5 | 125.5 | 10.1 | | OA#23
55 | 871
882 | 88:59 | 0E 6 | 167 6 | 04 5 | FOO C | 10.7 | | 56 | 896 | 88:54 | 85.6
85.5 | 167.6
164.3 | 94.5 | 129.6
125.5 | 10.3 | | 57 | 914 | 88:49 | 85.4 | 160.8 | 94.5
94.5 | 121.4 | 10.6 | | 21 | 21.4 | 00.49 | リノ・ サ | 10040 | 24.2 | 121'54 | 10.7 | In top same TABLE I - I Cont'd. BASIC ORBITAL PARAMETERS | DAY | REV | PERIOD | PERIGEE | APOGEE | INC | ARG/PER | B ANG | |----------|--------------|--|--------------|----------------|--------------|----------------|-------| | OA#24 | 920 | | | | | | | | 0A#25 | 922 | | | | | | | | 58 | 931 | 88:58 | 85.6 | 160.6 | 94.5 | 147.6 | 11.2 | | 59 | 947 | 88:53 | 85.5 | 157.8 | 94.5 | 143.1 | 11.5 | | 60 | 963 | 88:48 | 85.4 | 154.9 | 94.5 | 138.7 | 11.8 | | 0A#26 | 975 | 00:40 | 62.4 | . 124+9 | 34.3 | 100.7 | 11.0 | | 61 | 979 | 88:59 | 85.6 | 162.9 | 94.5 | 142.5 | 12.1 | | 62 | 996 | 88:53 | 85.6 | 159.5 | 94.5 | 138.2 | 12.4 | | 63 | 1012 | 88:47 | 85.5 | 155.4 | 94.5 | 133.5 | 12.8 | | OA#27 | 1017 | | | | | | | | 04 | 1029 | 88:59 | 85.6 | 165.5 | 94.5 | 136.4 | 13.1 | | 65 | 1644 | 88:54 | 85.5 | 162.2 | 94.4 | 132.2 | 13.4 | | 66 | 1060 | 88:49 | 85.4 | 158.7 | 94.4 | 128.1 | 13.7 | | OA#28 | 1065 | The second secon | Garagea. | | | | | | 67 | 1076 | 88:57 | 25.7 | 165.2 | 94.4 | 130.2 | 14.0 | | 68 | 1092 | 88:52 | 85.7 | 161.7 | 94.4 | 126.1 | 14.3 | | 69 | 1109 | 88:44 | 85.6 | 156.8 | 94.4 | 121.5 | 14.6 | | OA#29 | 1120 | | | | | | | | 70 | 1125 | 89:06 | 85.7 | 174.1 | 94.5 | 127.0 | 14.9 | | 71 | 4 | 88:59 | 85.6 | 169.8 | 94.5 | 122.8 | 15.2 | | 72 | 1157 | 88:53 | 85.5 | 165.9 | 94.4 | 118.9 | 15.5 | | OA#30 | 1162 | | | | | | | | 0A#31 | 1164 | | | | | | | | 73 | 1173 | 88:58 | 85.5 | 160.2 | 94.4 | 147.7 | 15.9 | | 74 | 1190 | 88:52 | 85.5 | 157.0 | 94.4 | 143.0 | 16.2 | | 75 | 1206 | 88:46 | 85.3 | 153.5 | 94.4 | 138.5 | 16.5 | | OA#32 | 1211 | | | | | | 1 | | 76 | 1222 | 88:57 | 85.6 | 161.8 | 94.4 | 141.1 | 16.8 | | 77 | 1238 | 88:52
| 85.5 | 158.7 | 94.4 | 137.0 | 17.1 | | 78 | 1254 | 88:45 | 85.3 | 154.1 | 94.4 | 132.8 | 17.4 | | OA#33 | 1260 | | , | عد والد و | 20.4 20 | | 170 | | 79 | 1270 | 88:59 | 85.5 | 164.9 | 94.4 | 137.5 | 17.8 | | OA#34 | 1282 | 00 55 | 25.6 | وسيدر و | :0. 4 A | 1774 | 10.1 | | 80 | 1286 | 88:55 | 85.6 | 162.3 | 94.4 | 134.1 | 18.1 | | 81 | 1303 | 88:49 | 85.4 | 158.5 | 94.4 | 129.9 | 18.4 | | 0A#35 | 1313 | 00.50 | DE A | 1000 | 0.4.4 | 177 0 | 10.0 | | 82
83 | 1321 | 88:59
88:55 | 85.9 | 166.2 | 94.4 | 133.0 | 18.8 | | 84 | 1335
1351 | 88:49 | 85.9
85.7 | 163.3
159.5 | 94.4
94.4 | 129.3
125.2 | 19.1 | | 0A#36 | 1357 | 90:47 | 02.7 | 158.5 | 94.4 | 122.2 | 17.4 | | 85 | 1368 | 88:57 | 85.7 | 167.3 | 94.4 | 125.9 | 19.8 | | 0.5 | 1200 | 00273 | N.J F. | 107,5 | 2™ • ** | 147.3 | 19.0 | HX TOP SECRET # TABLE I - I Cont'd. # BASIC ORBITAL PARAMETERS | | DAY | REV | PERIOD | PERIGEE | APOGEE | INC | ARG/PER | B ANG | |---|-------|------|--------|-----------|--------|------|---------|-------| | | 86 | 1384 | 88:50 | 85.5 | 162.8 | 94.4 | 121.8 | 20.1 | | | 87 | 1400 | 88:42 | 84.9 | 156.8 | 94.4 | 117.6 | 20.4 | | | 0A#37 | 1406 | 00.42 | 04.3 | 120.0 | 24.4 | 117.0 | 20.4 | | | OA#38 | 1408 | | | | | | | | | 88 | 1416 | 89:02 | 85.8 | 164.3 | 94.4 | 148.0 | 20.8 | | | 89 | 1432 | 88:57 | 85.6 | 160.7 | 94.4 | 143.6 | 21.1 | | | 90 | 1449 | 88:50 | 85.5 | 156.3 | 94.4 | 138.0 | 21.4 | | | | | 88:44 | | | 94.4 | | 21.8 | | | 91 | 1465 | | 85.2 | 152.3 | | 134.4 | | | | al Ka | 1481 | 88:37 | 84.9 | 147.8 | 94.4 | 129.9 | 22.1 | | | 93 | 1497 | 88:29 | 84.5 | 142.9 | 94.4 | 125.5 | 22.4 | | | OA#39 | 1502 | 20.45 | AL 200 PA | 100 | ~ | 170.0 | no n | | | 94 | 1513 | 88:49 | 85.8 | 155.1 | 94.4 | 138.0 | 22.8 | | | 95 | 1530 | 88:42 | 85.7 | 151.2 | 94.4 | 133.2 | 23.1 | | | 96 | 1546 | 88:36 | 85.5 | 147.2 | 94.4 | 128.8 | 23.4 | | | OA#40 | 1551 | F | | | | | | | | 97 | 1562 | 88:48 | 85.9 | 155.1 | 94.4 | 134.3 | 23.8 | | | 98 | 1578 | 88:42 | 85.7 | 151.3 | 94.4 | 130.0 | 24.1 | | | 99. | 1594 | 88:35 | 85.5 | 147.2 | 94.4 | 125.7 | 24.4 | | 1 | OA#41 | 1600 | | | | | | | | | 100 | 1611 | 88:47 | 85.8 | 156.1 | 94.4 | 130.3 | 24.8 | | | OA#42 | 1616 | | | | | | | | | 101 | 1627 | 88:46 | 85.9 | 155.6 | 94.4 | 128.6 | 25.1 | | | 102 | 1643 | 88:39 | 85.6 | 151.8 | 94.4 | 124.6 | 25.4 | | | OA#43 | 1649 | | | | | | | | | 103 | 1659 | 88:41 | 85.5 | 153.1 | 94.4 | 123.9 | 25.8 | | | 104 | 1676 | 88:33 | 85.2 | 148.3 | 94.4 | 119.3 | 26.1 | | | 105 | 1692 | 88:24 | 84.3 | 141.4 | 94.4 | 115.0 | 26.5 | | | | | | | | | | | # FIGURE 1 - 8 Distribution of land mass coverage as a function of Scan Sectors FIGURE 1 - 9 Distribution of land mass coverage as a function of Scan Sectors 15.75 13.50 OF EXPOSED FILM 9.00 PERCENTAGE 2.23 0.00 1-1- -90 BIF-007/D-0081-74 #### FIGURE 1 - 18 Distribution of fully framed Targets vs. Scan Sectors # MSN-1208 CAMERA A Approved for Release: 2025/06/18 C05137282 26. 1-19. ## FIGURE 1 - 19 Distribution of fully framed Targets vs. Scan Centers # MSN-1208 CAMERA B Approved for Release: 2025/06/18 C05137282 (S) S. SO PENCENTHGE OF EXPUSED FILM 30 to 82 84.00 # MSN-1208 CAMERA B Approved for Release: 2025/06/18 C05137282 ### 2.0 SENSOR SYSTEM PERFORMANCE #### 2.1. Coarse Film Path Coarse film path diagnostics indicated nominal performance throughout take-ups one, two and three. Analysis of a B-side emergency shut down (ESDB), which occurred during take-up four operations, indicated a hardware failure in the coarse path control electronics. The ESDB occurred on the start-up of an operation planned for Rev 1268 and was due to a low tension condition in the coarse path. A B-side creep test conducted over 1283 Pogo also shut down, but this shutdown was due to a high tension coarse path condition. Analysis of the Rev 1268 ESDB and primarily of the Rev 1283 ESDB indicated that the take-up integrator reset signal to the take-up servo loop was not operating. The Rev 1268 data was in telemetry mode C, as is most operational payload data, and the take-up integrator output signal is not included in the telemetry format. The Rev 1283 data was in telemetry mode B which does include the take-up integrator output signal. The take-up integrator integrates the output coarse tension error from nominal and modifies the take-up servo error signal, which is also a function of the velocity command, velocity feedback and the coarse output tension offset. The take-up servo responds by altering the take-up velocity in a manner consistent with correcting the output coarse tension error. Integration of the tension error begins at camera power turn-on. There is a small tension error at the start-up of most camera operations, and because of the nominal time delay between camera power on (CB+) and film transparts on (FT+), the integrator out-put at the time the take-up brakes are released can be substantial. Therefore, the integrator output is reset to null upon application of brake release power via the 35ms. reset signal generated within the take-up electronics. In the absence of the reset signal, the integrator output will erroneously alter the error signal to the servo loop. The magnitude of the error introduced is dependent on the original coarse output tension offset and the time duration between camera power on and transports on. In the case of the Rev 1268 ESDB, the CB+ to FT+ time was in excess of 120 seconds for film path pressurization purposes, and although the initial coarse tension offset was small, the integrator output was saturated by the time brakes released and indicative of a much larger over tension condition than what actually existed. The servo loop therefore overcorrected for the actual tension error and subsequently caused the under tension ESDB. The Rev 1283 ESDB resulted when the servo overcorrected for an initial undertension condition and drove the system into the high tension state. Analysis of coarse tension data from currently available station tapes indicated integrator failure occurred between operations 598 and 605. Under normal operating conditions (i.e. initial coarse output tension greater than 2.2 lbs. and less than 2.8 lbs; CB+ to FT+ less than or equal to 17 seconds) the TU servo can recover from the integrator error present at brake release without the reset signal. The remainder of take-up four operations were constrained to a maximum C+ to FT+ time of 17 seconds and the startup coarse output tension limits noted above. No further problems in this area were encountered. ## 2.2 Fine Film Path Fine film path diagnostics indicated proper hardware performance throughout the mission for both camera systems. ## 2.3 Command and Control The sensor system performance with respect to the Command and Control Subsystem was nominal throughout the mission. All commands were properly received and executed. #### 2.4 Sensor System Control On Rev 980 the sensor system failed to execute the second and third of three non-nested operations. The first operation, Msn OP 490, executed normally. The set-up commands for the two Ops that failed to execute, up to and including seal doors open, were properly executed. Neither the SU nor the TU brakes were released and the film transports did not operate. On Rev 989 both an A-Side and a B-Side CV test were run with verification interlocks enabled. The A-Side test failed to execute. The B-Side test executed normally. On Rev 991 an A-Side CV test was successfully executed with verification interlocks disabled. On Rev 993 an A-Side CV test was run with SCC-II and verification interlocks disabled. This test also failed to execute which isolated the problem to the A-Side verification circuitry external to either SCC | or SCC | II. The most probable suspect for the failure was an absence of the "Builder Roller Down" verify signal. On Rev 995 a health check was successfully executed in SCC II with VIA disabled. Stereo operations were resumed on Rev 996 using SCC II with VIA disabled and continued without further problems through the remainder of RV-3. When transfer to RV-4 was made, VIA was re-enabled and the mission successfully completed in that configuration with SCC II. Upon receipt of the RV at Rochester, the outer shrouds were removed and a visual inspection was made with an infrared scope and infrared photographs were taken. Both the visual inspection and the photographs indicated that the condition of all portions of the Builder Roller and the lower verify switch were normal. Extensive electromechanical testing did not provide any information to help isolate the cause of the Builder Roller Verify signal failure. ## 2.5 Optical Bar Performance The Optical Bars performed properly throughout the mission. Variations between commanded and actual OB velocities were no different than those noted during pre-flight systems test and were within the specification limits of .00054 rad/sec. ### 2.6 LSFS/Focus Mission 1208 used pre-flight determined focus settings for 1414 black and white film, SO-255 color film and FE-3916 infrared film. The forward camera was set at a nominal of 68 microns through RV-1. Image quality evaluation of the returned film resulted in a change to a new nominal of 76 microns commencing with Msn Op 156 in RV-2 and continuing through the remainder of the mission. The aft camera was set to a nominal of 25 microns for 1414 material and 55 microns for both SO-255 and FE-3916. No readjustments from the pre-flight planned values were required. The LSFS output, as with 1207, was deemed reliable only on the first operation of each day (i.e., after three hours of non-operation and during the first five minutes of the first subsequent OP). Readings of the LSFS output were taken only at these times throughout mission 1208. 32. Approved for Release: 2025/06/18 C05137282 BIF-007/D-008I-74 #### 2.7 Instrumentation All instrumentation operated normally throughout the mission. The system provided consistent and accurate data for analysis of
anomaly conditions and for the routine verification of camera status. Although not part of the sensor system instrumentation system, a MUX failure necessitated switching from the primary (MUX 4A) to the backup (MUX 4B) unit. 2.8 Pneumatics The pneumatic system nitrogen reserve status for mission 1208 was as follows: | | | TANK | | TANK B | | | | |------------------------------|-----------------|--------------|---------------|----------------|--------------|---------------|------------------------| | Even† | Press.
(psi) | Temp
(°f) | Mass
(lbs) | Press
(ps1) | Temp
(°f) | Mass
(lbs) | Total
Mass
(Ibs) | | Liftoff | 3388 | 69 | 17.8 | 3374 | 68 | 17.7 | 35.5 | | End of
Primary
Mission | 196 | 69 | 1.1 | 210 | 67 | 1.2 | 2.3 | Toward the end of the mission it became necessary to manage camera operation in terms of the distribution of scan centers, scan lengths and frame count to avoid the possibility of depleting the gas supply prior to the total usage of the film supply. The computed PN+ use rate was a constant 0.023 lbs/min throughout the mission. 2.8.1 During the launch countdown, on Day R-1, the A side regulated pressure was observed to decay at an abnormally high rate, e.g., from 2.46 to 1.28 psi in 300 seconds. On the basis of this decay rate and the immediately available design data, several hundred manufacturing drawings, pertaining to the pneumatic system plumbing volumes, it was concluded that a leak had developed on the high pressure side of the regulator and was of sufficient magnitude to be unacceptable for flight operation, i.e., the continuous loss of gas would severely shorten the mission. An acceptable corrective action was taken by isolating the leak from the high pressure gas supply, tank pressure, by commanding the A side high pressure isolation valve (HPIV-A) to the closed position following the uncage and OB stow sequences executed on Rev 0. The only disadvantage to this configuration was a reduction in system reliability as a result of the loss of parallel redundancy in the D bar gas supply. Subsequent to the launch, the plumbing system volumes were measured at the supplier's facility and determined to be significantly different from the values calculated from drawings. (The measured values were: high pressure stage = 0.290in³, intermediate pressure stage = 0.036in³, low pressure stage = 3.085in³.) New analysis were performed and it was concluded that the leak was on the low pressure side of the regulator and was of negligible magnitude. Therefore, it was decided to open the HPIV-A to regain maximum system reliability. As a precaution, on orbit tests were performed to verify that the leak was in the low pressure stage. The tests were conducted by momentarily opening the HPIV-A and monitoring the regulated pressure decay rate following valve closure. As a result of the analysis and tests, the HPIV-A was opened on Rev 563 and left open for the remainder of the mission. A detailed analysis of the pneumatics system leak is provided in, "Memorandum #930, OTD, SED, SAE, To: C. Karatzas, From: H. Yanowitz and B.E. Nelson", dated: 2 May 1974. ### 2.8.2 Path Pressurization For the first time in eight missions it became necessary to acuate the pneumatic system operate valves to maintain the film path pressure above the ballooning criterion. The initial repressurization occurred after transfer to TU-4 and was repeated as required for the remainder of the mission. Although the path leak rate was within specification requirements, the combination of short operations with corresponding small increases in path pressure, separated by long quiescent periods caused the repeated occurrence of the low pressure condition. To minimize the additional gas usage, a procedure was used wherein the path was repressurized, increased by approximately 0.1 psi, only at those times the path pressure had decayed to the ballooning pressure limit. BIF-007/D-0081-74 2.9 Tr ## Trend Analysis A statistical trend analysis of sensor system performance was maintained by the Systems Integration Section throughout mission 1208. Data samples were taken from one operation per day, when available, and mean values and standard deviations were calculated and plotted for selected functions to facilitate the detection of any long term trands that would indicate the orbit of system degradation. The analysis indicated a momentary disturbance in all tension sensors and the A side metering capstan summed error in the first 12 scan degrees of operation 564, however, the signals returned to nominal values for the remainder of the operation. Although not regarded as a trend or anomaly, the B side metering capstan summed error mean valve shifted from 0.034 oz. in. with 1414 material to approximately 0.043 oz. in. with \$0-255 film. The mean level returned to approximately 0.034 oz. in. with FE3916 film. Otherwise, all system functions remained nominal throughout the mission with no indication of abnormal long term trend. The functional parameters used for the analysis were as follows: - 1. Film to Bar Sync Velocity Error (P451, P452) - 2. Metering Capstan Summed Error (P403, P404) - 3. Platen Skew Error (P415, P416) - 4. Platen Photo Summer Error (P411, P412) - 5. Input Drive Capstan Summed Error (P803, P804) - 6. Output Drive Capstan Summed Error (P811, P812) - 7. Supply Drive Summed Error (P105, P106) - 8. Take-up in Use Drive Summed Error (TSEA, TSEB) - 9. Optical Bar Summed Error (P501, P502) - 10. OB Velocity Error - 11. Looper Position (P601, P602) - 12. Film Path Carriage Position (P713, P714) - 13. Take-up Carriage Position (P951, P952) ## 3.0 MISSION EVENT HISTORY A summary listing of all sensor system photographic operations is presented in Appendix A-I of this report. The summary primarily covers operational photography, but also includes SS and PFA engineering photography. The following is a chronological description of these engineering operations plus other special events that occurred during Mission 1208. ### 3.1 Ascent The countdown and launch were accomplished without incident, with uncage (sequences 204 and 205) and OB stow (sequences 213 and 214) occurring in a normal manner following BV-SV separation. These events were verified from tape recorder playback at Rev 1 POGO. ## 3.2 Health Checks Day I operations through Rev 4 were designed to verify system health and confirm orbit operational readiness. An engineering operation designed as a baseline test was performed on Rev 8. The health check events were as follows: - Rev I: An uncage verification check, sequence 215, was performed over POGO to confirm the uncage event. - Rev 2: A constant velocity run, sequence 208, was performed over KODI. This was the first attempt to transport film after launch. The Sensor System worked properly, and the film was correctly aligned within the film path. Steerers, tensions, and take-up and supply drive summed errors were well within limits. - Rev 4: The sensor system health check, sequence 175, was performed over POGO. All sensor system executed commands were functionally verified, including all tested bits of the variable commands. Focal plane position indicated 68 microns for the forward camera, and 25 microns for the aft camera. - Rev 8: A scheduled engineering operation, sequence 209, was performed over COOK to provide characteristic telemetry data for comparison with data from any future identical functional check. In the event of an anomaly, the telemetry signatures of the two runs could then be equated and any suspected system degradation determined. #### 3.3 **Engineering Events** Eleven engineering tests were defined in the SV-8 Engineering Photography Plan. This series of tests were designed to acquire data for assessment of on-orbit camera, lens and film performance. Following is a summary of the tests and their objectives: | | Test | Objective/Status | |--------------|-------------------------------------|---| | l. | Thru-Focus (1414) | Optimize Focus. Fully accomplished; confirmed focus (1414) was optimum in RV-2. | | 3.A | Smear Slits (1414) | Validate Image Motion Compensation settings. Completed in RV-2. | | 3 . B | Smear Slits (SO255) | Evaluate smear slit for validating image motion compensation settings with color film. Completed in RV-4. | | 3.C | Smear Slits (FE3916) | Evaluate smear slit for validating image motion compensation settings with IR film. Completed in RV-4. | | 4. | Color Corn Acquisitions | Evaluate and radiometrically call-
brate SO-255. Satisfactorily
completed in RV-4. | | 5. | IR Color Corn Acqui-
sitions | Evaluate image quality of FE3916.
Accomplished in RV-4. | | 6. | Lens MTF (1414) | Measure on-orbit lens MTF.
Completed in RV-3. | | 7 | Tucson Acquisition | Standard scene for quality assessment. Satisfied in RV-1,2,3 and 4. | | 8. | Color Thru-Focus (SO-255) | Optimize Focus. Completed in RV-4. | | 9. | Tri-Bars for Resolution | Photo quality assessment. Satisfied RV-1,2,3 and 4. Acquisitions common with Test 7. | | 10. | Smear versus Scan
Angle (1414) | Assess smear as a function of scan angle location. Fully accomplished. Completed in RV-3. | | 12. | Dense Culture
Acquisition (1414) | Photo/EM correlation. Satisfied in RV-1,2,3 and 4. | | | | 3.4 | Mission | 1208-1 5 | pecial E | Events | the state of s | | | |--|---|-----|---------|----------|----------------|-----------
--|-----------|------| | | | | REV | OPN | TEST | PRE
WX | EVENT/LOCATION | VER
WX | FTG | | | | | 0.8 | | | | UNCAGE/SCC I SEL | | | | · , | ٧ | | 0.8 | | | | STOW A/STOW B
HPIV A CLOSE | | | | √pprov | 1 | 3 | 1 | | | | UNCAGE VERIFY | | | | ed for | | | 2 | | | | INHIBITED CV | | 102 | | Relea | | | 4 | 1-3 | | | SS HEALTH CHECK | | 163 | | lse: 20 | | | 8 | 8 | | | SS ENGINEERING | | 63 | | Approved for Release: 2025/06/18 C05137282 | | | 14 | 13 | Service . | 75
75 | 1414 T/F-8,-16,-8,0,+8,0
BOSTON
PROVIDENCE | 99
99 | . 54 | | 05137282 | 3 | | 16 | 14 | 1 | 95 | 1414 T/F +16,+8,0
SAN DIEGO | 90 | 29 | | 10 ==== | | | 56 | 42 | | | PN EQUALIZE | | | | | | | 81 | 54 | and the second | 85
80 | 1414 T/F-16,-8,0
SACRAMENTO
SAN FRANCISCO | 95
99 | 56 | | | | | 86 | 55 | | | PN EQUALIZE | | | | | | | 96 | 63 | 3A | 70 | 1414 SMEAR SLITS
DALLAS/FT WORTH | 99 | 81 | 1055 #### Mission 1208-1 Special Events-Cont'd. 3.4 | | | REV | OFN | TEST | PRE
WX | EVENT/LOCATION | VER
WX | FTG | |---------|---|-----|-----|---------|-----------|---|-----------|------| | | | 97 | 64 | 3A. | 95 | 1414 SMEAR SLITS
LOS ANGELES | 99 | | | | | | | 10 | 85 | 1414 SMEAR VS SCAN
SAN DIEGO | 99 | 124 | | ta goas | | 129 | 84 | 7,9,12 | 95 | TUCSON W/5T RESO | 99 | | | X | | 144 | 94 | ţ | 85 | 1414 T/F-8A,O,+8B,O
ATLANTA
PN EQUALIZE | 99 | 27 | | | 4 | 160 | 103 | 10 | 85
85 | 14 4 SMEAR VS SCAN
BALTIMORE
WASHINGTON | 99
99 | 93 | | | | 176 | 114 | 1
3A | 75
75 | 1414 T/F+16,+8,0,-8,0 NEW YORK 1414 SMEAR SLITS PHILADELPHIA | 95
95 | 121 | | | | 184 | 115 | | | PN EQUALIZATION | | | | | | 225 | 130 | | 80 | 1414 T/F+16,+8,0,-8,-16
DETROIT | 99 | 34 | | | | 225 | 131 | | | PROTECTIVE WRAP | e: " | 108 | | | | | | | | 1208-1 FOOTAGE | | 1055 | | | | | | | | ACCUMULATED FOOTAGE | | | Approved for Release: 2025/06/18 C05137282 | | 3.5 | Missio | n 1208-2 S | pecial E | Events | | | | |-----------|-----|--------|------------|------------|-----------|--|-----------|-----| | | | REV | OPN . | TEST | PRE
WX | EVENT/LOCATION | VER
WX | FTG | | | | 226 | | | | TRANSFER TO TU2-PREP I | | | | | | 227 | | | | COMPLETE TRANSFER-PREP 2 | | 63 | | | | 248 | 139/141 | | | PN EQUALIZE | | | | Appro | | 281 | 156 | | | PBF A SET TO 76
PER PFA DIRECTION | | | | ved for R | | 291 | | | | IT-B SET TO -5 STEPS
PER PFA DIRECTION | | | | elease | | 313 | 165/166 | | | PN EQUALIZE | | | | 高度数 単数単 ・ | | 338 | 175 | 12 | 70 | QUALITY VARIABILITY MIAMI | 75 | 38 | | 6/18 C | | 356 | 187 | | | PN EQUALIZE | | | | 0513 | | 428 | 224 | | | PN EQUALIZE | | | | 7282 | | 435 | 228 | 10
3A | 70
70 | 1414 SMEAR VS SCAN
NEW YORK
1414 SMEAR SLITS
PHILADELPHIA | 80
30 | 144 | | | | 451 | 234 | 3 A | 70
70 | 1414 SMEAR SLITS
BOSTON
PROVIDENCE | 99
90 | 49 | | | | 480 | | | | LEAK RATE TEST-5 SEC | | | | | | 493 | 254/256 | | , | PN EQUALIZE | | | 1757 | * | | REV | OPN | TEST | PRE | EVENT/LOCATION | | VER | FTG | |----|-----|-----|-----|---------------|----------|---|-----|----------|-----| | | | 496 | | | WX | LEAK RATE TEST-180 SEC | | WΧ | | | | | 548 | 302 | 10 | 65
65 | 1414 SMEAR VS SCAN
BOSTON
PROVIDENCE | · · | 99
99 | | | | | 563 | | | | HPIVA OPEN | | | | | | | 566 | 31) | 3.1
7,9,12 | 95
95 | 1414 LENS MTF
FLORENCE LINES
TUCSON W/5T RESO | | 99
85 | 114 | | | 4 5 | 629 | 338 | , | 75
75 | 1414 T/F+12,+6,0,-6,0
BOSTON
PROVIDENCE | | 99
99 | 46 | | | | 631 | 339 | 10 | 75 | 1414 SMEAR VS SCAN
LOS ANGELES | | 85 | 88 | | | | 647 | 346 | 6.1 | 95 | 1414 LENS MTF
LUKE LINES | | 99 | 52 | | .* | | A | | | | 1208-2 FOOTAGE | | | 702 | | | | | | | | ACCUMULATED FOOTAGE | | | | | | 3.6 | Missi | on 1208-3 | Special | Events | La companya da co | | | |---|-----|------------|-----------|---------|-----------|--|-----------|-----| | enzania de la constanta | | REV | OPN | TEST | PRE
WX | EVENT/LOCATION | VER
WX | FTG | | de y Caleb de Americanismo | | 678 | | | | TRANSFER TO TU3-PREP 1 | | | | | | 679 | | | | COMPLETE TRANSFER-PREP 2 | | 63 | | Approved | | 696 | 372 | 12 | 90 | QUALITY VARIABILITY
SACRAMENTO/
BAY AREA | 80 | 30 | | Approved for Release: 2025/06/18 C05137282 | | 728 | 388 | 6.2 | 95 | 1414 LENS MTF
KINGMAN LINES
1414 LENS MTF | 99 | | | se: 20 | | | | | 95 | QUARTZSITE LINES | 85 | 78 | |)25/06 | 43 | 744 | 397 | 7,9,12 | 90 | TUCSON W/5T RESO | 99 | 29 | |)/18 C051 | | 752 | | | | XT-A SET TO +2 STEPS
PER PFA DIRECTION | | | | 137282 | | 888 | 456 | 10 | 75 | 1414 SMEAR VS SCAN
MONO B@-37°
NEW YORK | 85 | 83 | | | • | 989 | 491 | | | ESD A/B INDICATION | | | | | | 989
989 | | | | MONO À CV
MONO B CV | | 12 | | | | 991 | | | | MONO A CV VIA DIS | | 12 | | | 3.6 | Missio | n 1208-3 | Special | Events-(| Cont'd. | And the same of th | | |----|-----|--------|----------|---------|-----------|------------------------------------
--|-------------| | | | REV | OPN | TEST | PRE
WX | EVENT/LOCATION | VER
WX | FTG | | | | 993 | | | | SCC 2 SELECT
MONO A CV VI A ENA | | | | | | 995 | | | | SCC HEALTH CHECK
VI A DIS | | 163 | | • | | 1003 | 502 | 6.1 | 95 | 1414 LENS MTF
FLORENCE LINES | 95 | 50 | | 2 | | 1020 | | | | MONO A CV
VIA ENA/DIS | | 12 | | | | 1092 | | | | PN EQUALIZE | | | | 33 | | 1099 | | | | SSP | | | | 83 | | | | | | 1208-3 FOOTAGE | • | 437A 478B | | | | | | | | ACCUMULATED FOOTAGE | | 2144A 2235B | | | 3.7 | Mission | 1208-4 Sp | ectal E | vents | | | | |------|-----|---------|-----------|---------|-----------|--|-----------|-----| | | | REV | OPN | TEST | PRE
WX | EVENT/LOCATION | VER
WX | FTG | | | | 1115 | | | | TRANSFER TO TU4-PREP I | | ı | | | | 1116 | | | | COMPLETE TRANSFER-PREP 2 | | 63 | | | | 1811 | 620 | 7,9,12 | 99 | TUCSON W/5T RESO | 99 | 29 | | | | 1268 | 641 | | | PN EQUALIZE
ESD B | | | | 100 | | 1277 | | | | PN EQUALIZE | | | | | | 1279 | | | | CREEP B | | | | | | 1283 | | | | CREEP B | 2 | * | | -1-1 | | 1287 | | | | DITHER TEST | | | | | | 1295 | | | | CV A-RELEASED FOR
MONO A OPN
JOG B | 7 | 64 | | | | 1299 | | | | CREEP B | | 7 | Approved for Release: 2025/06/18 C05137282** | | 3.7 | Mission | 1208-4 Sp | ecial E | vents-Co | <u>n+†d</u> . | | | | |--|-----|---------|-----------|---------|-----------|---|---|-----------|-----| | | | REV | OPN | TEST | PRE
WX | EVENT/LOCATION | | VER
WX | FTG | | | | 1300 | | | | SS ENGINEERING
RELEASED FOR
STEREO OPN | A | | 66 | | Approved for Release: 2025/06/18 C05137282 | | 1309 | 651 | -3A | 75
75 | 1414 SMEAR SLITS
-16,-8
BALTIMORE
WASHINGTON | | 99
99 | 37 | | r Rele | | 1461 | | | | PN EQUALIZE | | | | | ase: 2025/0 | | 1487 | 719 | .3A | 65 | 1414 SMEAR SLITS
-16,-8,0
NEW YORK | | 65 | 43 | | 6/18 (| | 1501 | | | | TRANSFER TO SO255 | | | | | 205137 | | 1528 | | | | PN EQUALIZE | | | | | 7282 | | 1554 | 733 | 4,12 | 99 | SO255 COLOR W/6C | | 99 | 37 | | | | 1570 | 741 | 8 | 95
95 | S0255 COLOR W/6C
VAN NUYS
S0255 T/F 14,0,-14
LOS ANGELES | | 99 | 87 | | | | 1585 | 745 | 4,8 | 95 | SO255 COLOR W/6C
T/F +14
ST LOUIS | | 95 | 81 | | 3.7 | Mission | 1208-4 | Special | Events-Cont'd. | |-----|---------|--------|---------|----------------| | | | | | | | REV | OPN | TEST | PRE
WX | EVENT/LOCATION | VER
WX | FTG | |------|-----|------|-----------|------------------------------------|-----------|-------------| | 1596 | | | | TRANSFER TO FE3916 | | | | 1633 | 756 | 3C | 75 | FE3916 SMEAR SLITS
PHILADELPHIA | 95 | 31 | | 1635 | 758 | 5- | 99 | FE3916 W/6C
STOCKTON | 99 | 29 | | 1651 | | | | PN EQUALIZE | | | | 1656 | | | | PN EQUALIZE | | | | 1667 | 764 | 5 | 65 | FE3916 W/6C
TUCSON | 95 | 29 | | 1687 | | | | PN EQUALIZE | | | | 1700 | | | | PREP 2/CV | | DEPLETED | | • | | | | 1208-4 FOOTAGE | | 596A 605B | | | | 1 | | ACCUMULATED FOOTAGE | | 2740A 2840B | Approved for Release: 2025/06/18 C05137282 BIF-007/D-0081-74 3.8 ## Solo Phase No solo phase experiments were performed on mission 1208. BIF-007/D-0081-74 ## 4.0 SENSOR SYSTEM TEST OBJECTIVES ## 4.1 Photographic Performance Determine the capability of the SS Optical System to provide the specified photographic performance. The post flight material evaluation of mission segments 1208-1, 1208-2, 1208-3 and 1208-4 indicated in a general sense the capability of the SS Optical System to provide the specified photographic performance. Mission 1208 was a summer mission launched in April in a non sun synchrous orbit of 94.5° inclination angle, prior to the summer solstice. Summer missions in general acquire a large percentage of photography at solar altitudes above 30 degrees, resulting in smaller operational slits, shorter exposure times and less image smear. The overall image quality, however, was affected to some extent, as it always is at this time of the year, by varying degrees of weather and haze. In addition, specular reflections and shadowless acquisitions resulted in significant image quality degradations to the mission photography, similiar to Mission 1206. In review, Mission 1206 was launched in July early in the afternoon in a sun synchronous orbit of 96.2 degrees following the summer solstice. This resulted in the specular reflection/front lighting problem to move south in latitude as a function of mission length, and the Jate launch caused the problem to locate at Nadir and simultaneously affect the imagery from both cameras. The sun synchrous inclination angle caused the problem to remain fixed in scan. Mission 1208, however, was launched in April, early in the afternoon, prior to the summer solstice, at 94.5° inclination angle, non sun synchronous. This caused the specular reflection/front lighting problem to first move north and then slightly south in latitude. The lower inclination angle increased the precession and moved the local sun time over target closer to morning as the mission progressed. The problem, initially occurring near Nadir, moved across scan, as a function of mission length, ending up at approximately 30-35 degrees of scan at the end of the mission. Thus both cameras did not experience either anomaly at the same scan position. BIF-007/D-0081-74 A much better operational plan for summer launches would be to launch early in the morning in a sun synchronous orbit. This places the anomaly out in scan, and the sun synchronous orbit fixes its position in scan. This intentional placement of the anomaly out in scan presupposes that operational target acquisition planning will not locate a large percentage of targets at these scan positions. Launching after the summer solstice will move the anomaly south away from the area of interest. The general overall range in mission image quality for both cameras was very good to poor with the majority rated as fair to good. Orbital performance prediction using CRYSPER and the actual operational parameters are included in Figures 4-1 thru 4-4 for each mission segment and Figure 4-5 for the total mission length. A brief discussion of image quality and general photographic system performance as a function of mission progression is provided, abstracted in part from the PFA Rebound 831 messages. ## 4.1.1 Mission Segment 1208-1 The overall image quality of both cameras ranged from very good to poor with the majority rated as fair. Analysis of the thru focus engineering ops both subjectively and with VEM, resulted in the PFA directing an eight micron retreat to the fwd camera platen, which changed the nominal platen to 76 microns. No focus change was made to the aft camera. In addition to the focus change on the fwd camera, an O2A2 change was required on the aft camera in-track of minus three command steps, resulting in a new in-track nominal setting of minus five command steps. No O2A2 adjustment was made to the fwd camera. Subjectively, the image quality of the aft camera appeared to be sharper than that of the fwd. In point of fact, the very good imagery on this mission segment, was limited to clear weather acquisitions on the aft camera. The poor image quality which subjectively exhibited an overall grainy appearance, and soft unsharp edges was in part the result of non optimum acquisition conditions, such as high scan angles, cloud cover, medium to heavy haze levels, and the defocused condition of the fwd camera. The very good imagery from the aft camera was comparable to the better photography produced from past Hexagon Missions. This assessment was substantiated by the good resolution readings obtained from the tri-bar corn target, and the direct subjective comparison of image quality from previous Hexagon Missions. HA TOP SECTION Approved for Release: 2025/06/18 C05137282 One 51/51 tri-bar corn target was
acquired on both the fwd and aft cameras. The data follows: | | | | ANG | LES | | UNAL
GRD. | | 2:1
GRD | ADJ
(FT) | |------------|------------|------------|------|--------------|----------|--------------|--------------|--------------|--------------| | CAMERA | OP. | FRAME | SCAN | FIELD | PLATEN | IT | XT | IT | XT | | fwd
aft | 084
084 | 004
004 | +1.1 | -0.8
-2.0 | 68
25 | | 2.05
2.25 | 2.06
1.86 | 2.44
2.73 | Exposure on this mission was based on a mean urban/industrial scene density of 1.10 instead of 1.00. Microdensitometer analysis of 13 frames (9 fwd, 4 aft) with vegetation surround indicated reasonably good exposure (-.02 log E from aim for the fwd, -.05 log E for the aft) requiring no alteration of the 1208 general recommendation. The two count exposure reduction bias given to the aft camera resulted in a better balance exposure between cameras. The average scene range was found to be higher than was generally recorded for this time of the year. This was true for both foreign and domestic ops. As was generally the case, the scene range of the domestic areas was greater as was the areas acquired by the fwd unit. Although two snow scenes examined were correctly exposed, portions of two other frames were underexposed (op 58, frame 15 fwd, op 118, frame 17 fwd). In both frames urban areas were grossly underexposed with accompanying low contrast. Evaluation indicated that the snow had melted in the urban areas, and because the urban area represents only a small portion of the frame, the snow bias was correctly applied. ## 4.1.2 Mission Segment 1208-2 The overall image quality of both cameras improved on 1208-2 from 1208-1. This general improvement was attributed in part to the focus adjustment of plus 8 microns on the fwd camera, and in part to the overall improved atmospherics, resulting from less snow and correspondingly less moisture in the atmosphere. A third contributing factor was the use of the 26DN process employ—on 1208-2 because of abnormally high base plus fog on—ffic sections of both original photographic recor ## 4.1.2 Mission Segment 1208-2-Contid. The image quality of both cameras on 1208-2 ranged from very good to poor with the majority rated as fair to good. As with Mission 1208-1, the very good imagery was associated with the aft camera. The aft camera image quality was superior to that of the fwd camera and subjective comparisons very clearly indicate that it was significantly sharper, and the aft camera consistently recorded very fine details. The fwd camera imagery was affected by specular reflections. One 51/51 tri-bar corn target was acquired on both cameras. The data follows: | | | , v | ANGI | LES | | UNA
GRD | DJ
(FT) | 2:1
GRD | ADJ
(FT) | |------------|------------|----------|------------|--------------|----------|------------|--------------|--------------|--------------| | CAMERA | 0P | FR | SCAN | FIELD | · | IT | XT | <u>IT</u> | XT | | fwd
aft | 311
311 | 12
12 | +16
+17 | -1.7
-1.5 | 76
25 | 1.83 | 2.38
2.19 | 2.03
2.05 | 2.63
2.49 | The late launch time of 1208 resulted in specular reflections on the fwd record, and full front lighting (shadowless acquisitions) on the aft photography. This condition occured near Nadir, and between approximately 5 to 30 degrees north latitude on this mission segment. This mission orbit was such that the specular reflections moved out in scan angle as the mission progressed and they were predicted to be at about 35 degrees scan at mission termination. The latitudes affected progressed to the north and then moved slightly south. Many cases of specular reflections were found in the fwd camera imagery within the latitude bands and scan angles indicated. In this mission segment the effect of the specular reflections appeared more severe than the corresponding shadowless acquisitions. These shadowless acquisitions did in fact produce a loss in contrast due to the reduction of shadows in the scene, and a corresponding reduction in fine detail. The specular reflections occurred where ground water was standing. In these areas there was gross image blooming and loss of localized information in the direct vicinity of these reflections. ## 4.1.2 Mission Segment 1208-2-Contid. A high base plus fog condition occurred on approximately 54 percent of the original negative. This condition existed on 1208-1 and was expected to be present throughout the remainder of the mission. This anomaly was associated with specific manufactured film rolls and the probable cause was a pelloid backing contaminant, which, when in contact with the emulsion, caused a fog build-up with time, reduction of the density range, and a small speed and contrast change. In an effort to compensate for the sensitometric change induced by the high fog found on 1208-1, EK evaluated several modified 19 DN processes. One of these, designated 26 DN, was selected for use on those segments of 1208-2 that could be expected to exhibit high fog in the standard 19 DN process. The 26 DN process reduced the fog somewhat and retained the desired sensitometry. Flashed stock was inserted at those manufacturing splices where a change from 19 DN to 26 DN or vise versa was required. The developer switch was then accomplished as these flashed stock inserts were being processed and imagery was not affected by the transitions. Comparisons were made of the duplicate positives from the normally processed low fog film, the 26 DN processed fogged film, and normally processed fogged film from 1208-1. The slightly increased contrast and the lower fog density of the 26 DN processed film over the 1208-1 fogged film was evident. More shadow and highlight detail was present in the imagery. Little discernable difference in image quality was present in comparisons made between the 26 DN processed fogged film and the normally processed low fog film in 1208-2. Microdensitometer analysis of 29 acquisitions of vegetation surround, urban/industrial area imagery indicated generally satisfactory exposure with either 19 DN or 26 DN processing. The 26 DN process demonstrated higher contrast of the scene imagery accompanied by a slighter higher exposure of the scene mean (.02 log E). The high base fog level did not adversely affect any vegatation surround scene examined. ## 4.1.2 Mission Segment 1208-2-Cont'd. Reported Snow Depth Continued monitoring of springtime snow surround imagery indicated increased occurance of underexposed and flat imagery of cultured areas due to melted and/or dirty snow within the area of interest. Examples of this appeared in ops 307 and 308 where underexposure ranged up to a stop. Because of the magnitude and frequency of underexposure of snow surround scenes, the following snow bias criteria was recommended for the remainder of the mission: Exposure Blas Less than 2 inches 2 to 10 inches Greater than 10 inches -.26 log E While this change did not totally optimize exposure of snow surround scenes it was designed to prevent complete loss of information in shadow areas without grossly overexposing areas of existing snow. ### 4.1.3 Mission Segment 1208-3 The overall image quality of both cameras ranged from poor to very good. This imagery was comparable to 1208-2. The instances of poor photography was attributed to atmospheric conditions, very high sun angles, specular reflections, and shadowless imagery. The aft camera image quality was superior to that of the forward and most of the very good imagery was on the aft record. The presence of specular reflections and shadowless acquisitions, particularly front lighting, continued to significantly degrade a large portion of the photography from this mission. These problems, particularly that of the front lighting, became more severe during this mission segment, with approximately 40 percent of the frames affected by front lighting. The most severe front lighting was similar to that seen on 1206. The problem was primarily due to the present sun/orbit geometry and large number of acquisitions in the latitude range from approximately 10 to 50 degrees north. Objects acquired between minus 10 and minus 20 degrees scan at these latitudes were degraded by front lighting, and objects acquired between plus 10 and plus 20 degrees were affected by specular reflections. ## 4.1.3 Mission Segment 1208-3-Cont'd. For acquisitions within this latitude range north of the sub-solar point the aft camera was affected by front lighting, and the fwd camera experienced specular reflections. The effects appeared on opposite cameras in acquisitions south of the sub-solar point. The magnitude of the degradation resulting from front lighting was dependent upon the camera to target to sun acquisition angle (cats angle). The extent of area affected ranged from a few degrees to as much as 20 degrees of scan in the most severe cases. The image degradation from the front lighting was more extensive than that from the specular reflections. All targets acquired with front lighting exhibited some degree of degradation, whereas specular reflections tended to degrade only high reflectance objects and their surroundings. One 51/51 tri-bar corn target was acquired on both the fwd and aft cameras. The data follows: | | | | ΑN | IGLES | | UNA
GRD. | DJ
(FT) | 2:1
GRD. | ADJ
(FT) | |------------|------------|--------|----------|--------------|----------|-------------|------------|-------------|-------------| | CAMERA | 0P | FRAME | SCAN | | PLATEN | IT | XT | IT | XT | | fwd
aft | 397
397 | 3
3 | -
- | -1.5
-1.3 | 76
25 | 1.7 | 2.5 | 1.9 | 2.8 | Microdensitometer analysis of vegetation surround urban area imagery indicated continued good exposure. There was also no significant change in mean scene density between use of 19 DN and 26 DN process chemistry. The following table gives the average exposure error of all vegetation surround scenes analyzed on 1208 (approx. 35 scenes) based on the optimum
exposure criteria of 1.1 density. AVG. MEASURED LOG EXPOSURE ERROR | | | 19 DN | 26 DN | |------------------|---|------------------------|-----------| | camera
camera | × | minus .02
minus .04 | minus .03 | ## 4.1.4 Mission Segment 1208-4 This mission segment contained 2588 feet of SO-255 conventional color material, and 3036 feet of FE-3916 infrared color material in addition to the regular 1414 black and white material. The photographic performance for each material type is as follows: Film Type 1414 - Black and White The overall image quality of 1208-4 ranged from good to poor with the majority rated as fair to good. The instances of poor photography again were attributed in part to localized atmospheric conditions and specular/ shadowless acquisitions. As with earlier mission segments the majority of the good imagery was associated with the aft camera. The aft camera image quality was superior to that of the fwd in that it was sharper. The combination of haze and shadowless acquisitions resulted in poor imagery which can be characterized as flat and grainy. This yielded imagery with soft and unsharp edges and significant loss in fine detail. This condition had a lesser impact on total performance than on 1208-3. Five 51/51 tri-bar corn targets were acquired on the fwd camera and one target on the aft camera. The data follows: | | | | ANG | LES | | UNAI
GRD. | | 2:1 /
GRD. | | |--------|-----|-------|-------|------|--------|--------------|------|---------------|------| | CAMERA | OP | FRAME | | | PLATEN | IT | XT | ĪT | XT | | fwd | 620 | 3 | +21.0 | +1.9 | 76 | 2,25 | 3.27 | 2.72 | 3.99 | | aft | 620 | 4 | +22.0 | +0.1 | 25 | 2.10 | | | 2,68 | | fwd | 741 | 4 | -16.0 | -0.3 | 76 | 1.72 | 1.95 | 2.58 | 2.89 | | fwd | 745 | 3 | - 8.0 | -2.3 | 76 | 1.85 | 2.25 | 2.24 | 2.80 | | fwd | 758 | 3 | -27.5 | -2.5 | 76 | 2,20 | 3.04 | 3.25 | 4.37 | | fwd | 764 | 3 | +14.0 | 0.0 | 76 | 1.78 | 2.66 | 2.24 | 2.80 | Film Type SO-255 - Conventional Color The quality of the imagery (for color film) ranged from very good to poor, with mose rated good. The very good imagery auality SQ-255 acquired with the was comparable to the Poor imagery was generally Hexagon System to data ints of haze. The color balance associated with large of the original was si tly yellow-green, and was similar to that of the SO-255 enquired on Mission 1207-1. Subjective evaluation of engineering photography for focus evaluation showed the nominal focus setting to be acceptable, although a slight bias to the plus side(6 microns) might have been in order. TO A TO to to be to the Approved for Release: 2025/06/18 C05137282 ### 4.1.4 Mission Segment 1208-4-Cont'd. Subjective evaluation of exposure showed the original to be slightly overexposed. Two 51/51 corn tri-bar targets were acquired on SO-255 film. The data follows: | ÄNGLES | | | | | | GRD.(FT) | | | |--------|------------|-------|----------------|--------------|----------|-----------|------|--| | CAMERA | OP | FRAME | SCAN | FIELD | PLATEN | <u>IT</u> | XT | | | aft | 741
745 | 4 | -15.3
- 8.0 | -2.3
-0.5 | 55
55 | 2.83 | 3.03 | | NOTE: Procedures for the 2:1 contrast adjustment have not been established for SO-255. ## Film Type FE-3916 - (Infrared color) The overall image quality of the FE-3916 material was good, and was comparable to that of 1207-4. The fine detail quality of the 3916, however, continues to be significantly less than that of the conventional black and white 1414 material utilized on the fwd camera. The color balance of the original has a slight cyan cast; subjective evaluation of the photography showed the exposure to be adequate. Two 51/51 tri-bar corn targets were acquired on the aft camera on the FE-3916 material. The data follows: | | | | ANGLES | | | | | | | |------------|------------|--------|----------------|--------------|----------|--------------|--------------|--|--| | CAMERA | OP | FRAME | SCAN | FIELD | PLATEN | IT | XT | | | | aft
aft | 758
764 | 3
4 | -27.5
+15.0 | -2.5
-2.3 | 55
55 | 5.66
4.80 | 6.21
5.94 | | | NOTE: Procedures for the 2:1 contrast adjustment have not been established for FE-3916. The presence of specular reflections and shadowless acquisitions, particularly front lighting, continued to degrade portions of the photography from this mission segment. The extent of the degradation within a frame (slight to severe) was approximately plus and minus 10 degrees of scan about the minimum cats angle with the most severe cases occurring between minus 20 and minus 30 degrees of scan at a latitude range of 40 to 45 degrees north for this mission segment. IX TOP SERVET Approved for Release: 2025/06/18 C05137282- ## 4.1.4 Mission Segment 1208-4-Cont'd. Microdensitometer analysis of six SO-255 urban area acquisitions indicated an overexposure of approximately 0.10 log E. This overexposure was due in part to the overall scene brightness increase inherent in low shadow acquisitions. Low shadow scenes appeared quite frequently in aft camera acquisitions. This condition also appeared regularly in Mission 1206 with the same results in exposure. This amount of overexposure was considered significant and may have to be considered in the predictions of future summer missions. Evaluation of three FE-3916 acquisitions showed a 0.08 log E overexposure. This was probably due in part to the shadowless conditions as well. Although no microsensitometry was done on 1414 film in 1208-4 observation of clear weather imagery subjectively indicated continuing good exposure. ## 4.2 Take-Up Survival Thru Recovery All the RV/TU assemblies arrived at the BRIDGEHEAD processing facility in good condition, with 1208-1 being a water recovery, and 1208-2,3 and 4 conventional air recoveries. The ability to maintain light tight integrity during orbital operations, separation, re-entry, recovery and transportation to the processing site, was fully demonstrated. The core locking pins were engaged and intact in TU's 1208-1,2 and 4 with the film well centered and stacked. The fwd camera core locking pin of TU 1208-3 was engaged and sheared and approximately 50 feet of film was spilled; on the aft camera, the core locking pin was engaged and bent causing some damage to the RV during pin removal. The film was well centered and stacked on both TU's of 1208-3. Small amounts of particulates were found in all the RV canisters. Related de-filming observations for each mission segment follows: #### 4.2.1 Mission Segment 1208-1 The RV/TU arrived at the processing facility in good condition. All parachute apparatus was wet. The RV cover recesses had small amounts of water in them resulting from the wet recovery. The battery discharge units had not been installed on the RV. Both core locking pins were engaged and intact. TOP SECRET ## 4.2.1 Mission Segment 1208-1-Conttd. Both film rolls were dry, well stacked and well centered in the T/U. A small amount of particulate was collected from the inside of the dome, as well as a one-inch long piece of wire which had been lodged in the fwd roll at OP 038 and had punctured four convolutions of the film. A severe dimple was detected near the head of the fwd roll at presplice. The cause was not found, but correlated with the puncture of fwd OP 001 IOR. Tag ends were removed and processed prior to normal defilming to allow early PFA team image quality evaluation. ## 4.2.2 Mission Segment 1208-2 The RV/TU arrived at the processing facility in good condition. Both core locking pins were engaged and intact. Both rolls were well stacked and well centered on the TU with no festooning into the dome. The hinge and thermal access door on the entrance side was sprung. A white residue was noted around the fwd side exit door and cutter assembly. During despooling it was discovered that the brake on the fwd side was not operational. It was commanded "on" several times but no braking could be accomplished. The audible sound of the brake solenoid actuation was detected thus concluding the problem to be in the brake assembly. This necessitated hand held tension on the stack when the motor was turned off for splicing. Two deep scratches were noted inside the dome and a I inch tear in the acrylic tape covering the fiberglass on the relay housing was noted on the fwd side adjacent to a canister alighment pin. The dome was clean with only a small amount of particulate retrieved. #### 4.2.3 Mission Segment 1208-3 The RV/TU arrived at the processing facility in good condition. Upon removal of the RV canister, it was evident that the de-orbit core locking pin on the fwd side had sheared resulting in a 50 foot film spill. Prior to handling the film, the builder roller arms were raised 63. ## 4.2.3 Mission Segment 1208-3-Cont'd. electrically using special test equipment. This was to preclude possible damage to the builder roller verify microswitch on the fwd side which evidenced intermittent failure during the mission. The 50 feet of spilled film was then responded onto the TU stack. The film stacks were good with the exception of a rough edge on the inside of the fwd stack approximately 3/4 inch from the outside diameter. The most significant problem occurred when attempting to withdraw the aft core locking pin that had been bent during recovery. Normal techniques for removing a bent pin failed, requiring the pin assembly to be drilled out. This effort consumed 18 hours. However, processing time was not lost because the fwd side film was processed in parallel with this effort. The RV suffered the following damage during removal of the bent core locking pin: - 1. Complete destruction of the piston and actuating pin. - 2. Cut wire bundle and damage to the solenoid assembly. - 3. Removal and damage to actuator assembly plate. - 4. A fracture in the support assembly cross frame member of approximately 7mm. - 5. Damage to primary battery. - 6. Minor physical damage (rubs, abrasions, etc.) to the aft side wire bundles in area of A-2 canister
recess. A small amount of particulate was retrieved from the dome. ## 4.2.4 Mission Segment 1208-4 The RV/TU arrived at the processing facility in good condition. No major problems occurred. The film stacks were good and the de-orbit pins did not shear. A small amount of shredded film was found in the RV cannister. The film was damaged by pulling the loose ends thru the camera. The TU electronics (A-2 and A-15) on aff side were removed and sent directly to the vendor for analysis of the integrator reset problem experienced during 1208-4 mission segment. ## 4.3 Optimum Focus Determination Mission 1208 (SV8/SN11) was launched with orbital focal plane settings of 68 microns on the forward camera and 25 microns on the aft camera. These settings included a plus 14 micron adjustment on both cameras for the altitude shift from infinity (A-2 collimator settings) to 85 nautical miles mission altitude. They also included a minus 15 micron adjustment on the forward camera and a minus 19 microns on the aft camera for the folding flat gravity effects. The forward camera was further adjusted plus 2 microns to account for a defocus of the test collimator. Following the evaluation of the on orbit thru-focus tests in RV-I a retreat of plus 8 microns was recommended for the forward camera. The forward platen was retreated to 76 microns on OP 156. No focus change was deemed necessary for the aft camera. A change in focus of plus 30 microns retreat was implemented on the aft camera when the material switched from 1414 black and white to the SO-255 conventional color. This focal plane position was also utilized for the FE-3916 infrared color material. ### 4.4 Optimum OOAA Settings On-Orbit smear data was collected during all four of the mission segments of Mission 1208, on either the 1414 material or on the FE-3916 infrared color. No smear data was collected on the SO-255 conventional color material. Analysis of the smear test material from mission segment 1208-1 identified an aft camera in-track velocity error. It was determined that the film velocity was 0.023 ips too fast and the PFA directed a minus three command step change to correct it. The ground settings for the forward camera, in-track and cross-track and the aft camera cross-track were determined to be correct. It is interesting to note that since the first use of smear slits on SV-6, all three systems have required an identical change to the aft camera in-track settings. This phenomenon is currently under investigation. On mission segment 1208-2 ninety data points were measured from each camera. The minus three command step change made to the aft camera in the in-track direction was verified to be correct and within less than one command step of the indicated Approved for Release: 2025/06/18 C05137 ## 4.4 Optimum OOAA Settings-Cont'd. zero setting. The forward camera in the cross-track direction showed that the indicated mean error was slightly greater than one command step and was changed accordingly by plus one command step. The forward camera in-track and aft camera cross-track directions were both confirmed to be properly set. The smear slit imagery, both subjectively and objectively, indicated higher smear variability then past systems. Only one smear test (a type 10) was run on mission segment 1208-3, and this was a mono run on the aft camera. This data was not reduced. Mission segment 1208-4 contained 2588 feet of SO-255 color and 3036 feet of FE-3916 infrared color material included in the aft camera record. No OOAA tests were acquired on the SO-255 material, however, subjective evaluation of the smear slit imagery indicated that the cross-track bias was adequate to account for the difference in material thickness. A subjective evaluation of the smear slit imagery acquired on the FE-3916 material was performed. The inherent low resolution level of the IR film and subsequent very poor image quality in the smear slits negated any quantitave measurement or subjective assessment of the cross-track film synchronization. The PFA recommended that this test on FE-3916 not be performed on subsequent missions. Special thru-focus/0²A² bias tests were conducted during this mission segment to determine if the minus eight microns focal plane bias was optimum. Analysis of the material indicated that the bias magnitude and direction was necessary and adequate. ## 4.5 Optics Thermal Profile The following subparagraphs describe the thermal environment for Mission 1208. Definitions of measured and calculated temperature parameters are contained in the Mission 1207 Post Flight Report, PM-1496-X. Thermal control for SV-8 can be generally summarized as follows: All SS temperatures were within design limits throughout the mission. ## 4.5.1 SV Environment SV thermal control parameters are summarized as follows: ## * Orbital Elements (Ref. Paragraph 1.5) Perigee Altitude $h_{p} = 85.6 \text{ n.m.}$ Period $\tau = 88.5 \, \text{min.}$ Inclination $I = 94.5 \deg.$ Argument of Perigee $\alpha = 130$ deg. Beta $\beta = -2.6 \text{ deg. (Rev I)}$ $\beta = 26.5 \text{ deg. (Rev I692)}$ # Midsection Thermal Control Design Values Cocoon $\alpha/\epsilon = 0.359/0.265$ Thermal Baffle $\alpha/\epsilon = 0.90/0.90$ ## MLI Effective Emittance Lower 210 Degrees e* = 0.0045 Fwd & Aft Bulkheads $\epsilon * = 0.0045$ Viewport Baffle e* = 0.0045 Under TCA Cocoon $\varepsilon * = 0.04$ Under SU Cocoon ε * = 0.6 ## 4.5.2 TCA Environment Table 4-1 is a summary of temperature levels, spatial distributions, and temporal variations over a typical orbital revolution in terms of the thermal ICD (1420316A) requirements. Figures 4-6 thru 4-8 show the corresponding orbital profiles of the ICD parameters. ## TCA COMPARTMENT TEMPERATURES # (MISSION 1208 REV 861) | in ton | Designated Zones | Max Allowable
ICD Value(°f) | Flight Value(°f) | |---|--|---------------------------------------|----------------------------------| | Temperature Level
Index (T TCA)
Zone I Mean Temp.
Zone II Mean Temp.
Zone III Mean Temp.
Zone IV Mean Temp.
Forward Bulkhead
Middle Bulkhead | Not Applicable | 70 ± 21 N/A N/A N/A N/A N/A N/A | 67
65
66
69
68
69 | | Variation of Mean Temp.
Between Designated
Zones | l to IV
II to III
I to II
III to IV
Bulkhead to Bulkhead | 9
6
4
4
6 | 2

 2
 3
 | | Spatial Variation of
Time-Average Temp.
Measurements at
Locations Within
Designated Zone |

 V
 Forward Bulkhead
 Middle Bulkhead | 11
9
9
11
5
17 | 5
2
1
1
2
6 | | Temporal Variation (Peak
to Valley) of Temperature
Measurement at any one
Location within Designated
Zone |
 | 46
20
20
46
26
57 | 17
1
17
4 | C05137282 # 4.5.3 Optical Bar Temperatures Tref was 67 $^{\pm}$ 1°f throughout the mission. The equilibrium temperature levels for the A and B optical bars were approximately 66°f and 65°f respectively. Figure 4 - 9 shows an orbital profile of the OB temperatures in the stowed position. 73. #### 5.0 SCF SUPPORT #### 5.1 'TUNITY 'Mission 1208 The 'TUNITY MOD-2 software for Mission 1208 performed all of its functions nominally except for the following software problems. In message 350, Rev 123, Operation 3, a desert polygon bias was applied where no desert polygon had been defined. This caused the operation to be under-exposed. A change was made to 'TAPWRP correcting the problem. The change was incorporated on the Flight Auxiliary Master. Check message 38 appeared often, flagging insufficient time between FT- and C-. Errors flagged ranged up to .289 seconds. This problem occurred by tightening check message 38. The problem was determined to be flight critical because message 38 was in error due to truncation in both 'TFUNCHK and 'TUMP. Changes were made to both 'TFUNCHK and 'TUMP correcting the problem. The change was incorporated on the Flight Auxiliary Master. #### 5.2 Augie #### 5.2.1 Overall Performance Real time performance of Augie data met all requirements expected. SSC real time modes are limited to verification of SS status. Playback performance of Augie data met all requirements expected. Time delays for play backs of data was reasonable with few exceptions. #### 5.2.2 Modifications No changes to the Augie modes were required during the flight. One MCR was required to correct the processing of the shutter open and close telemetry monitors, this was a deficiency in the handling of the data by the mode processing. Mode Change Requests have been submitted to change or add telemetry data processing to the mode for the next flight. The MCR's submitted are for the following reasons: a. Change processing of shutter open and close telemetry so as to calculate and output shutter open and close times to OB position in degrees. ## 5.2.2 Modifications-Cont'd. - Correct Supply Command Signal processing to increase accuracy of output. - Output slit width A & B telemetry data by using the change in DIU counter to clock out the next sample of slit width A & B telemetry data. - d. Add Take-up Integrator Output telemetry monitors to the Format C diagnostic modes. ### 5.2.3 D.T.V. SSC utilization of the DTV was limited to passive real time SS status verification. The use of the DTV will remain limited to status monitoring on the next flight also. ## 5.3 RTS Tapes and Microwave ## 5.3.1 RTS Tapes RTS tapes were used minimally during the last half of the flight due to use of the microwave link between the STC and Bldg. 156. The tapes that were utilized, the majority being COOK, met SSC requirements with few exceptions. 5.3.2 The microwave capability between the STC and Bldg. 156 did reduce the number of tapes required by SSC tremendously. The
link did experience many problems during the first portion of the flight, most of the problems fell into the category of not having the proper procedures set-up, however, most of these problems were corrected during the flight. Continued use of the microwave link with the STC is planned for the next flight. Hx TOP SECRET APPENDIX A-1 OPERATIONAL SUMMARY 1208-1 CAMERA OPERATIONS SUMMARY REVS PAD THROUGH REV 225, OP 131 | EV | MSN
CP | SCA | SCC | FRAN | 4 E.S | | ERCP | PHCT | C-FT | CUM-TU | -FEET | |--------|-----------|-----|-------|------|--------|------------|------|----------|-------|---------|-------| | porter | NUM | | | FhC | AFT | FER
FWC | AFT | FWD | 8 E T | ė. | 4 / T | | RE | LC | 6:C | 0 | | | 7.2 | 78 | | AFI | FND | AFT | | PRE | LC | 60 | 0 | 6 | 6
6 | 35 | 34 | 33
33 | 3.3 | 105 | 111 | | -DRE | LO | 3 C | 30 | | | | | | 3.3 | 173 | 178 | | | | | 6. 27 | 6 | 6 | 76 | 69 | 1.7 | 17 | 266 | 264 | | >RE | LC | 6.0 | 15 | | 4 | 11 | 2.0 | 40 | 2.3 | 317 | 307 | | PRE | ra | 3.0 | 30 | 6 | 6 | 3 | 11 | 17 | 17 | 337 | 335 | | PRE | LC | 60 | 15 | 7 | 4 | 11 | 20 | 40 | 23 | 388 | 378 | | *RE | FC | 120 | C | 8. | 8 | 38 | 7.0 | 87 | 87 | 513 | 535 | | ≯RE | LC | 120 | C | 8 | 8 | 111 | 111 | 87 | 87 | 711 | 733 | | PRE | LC | 60 | 0 | ć | 6 | 81 | 63 | 33 | 33 | 825 | 831 | | ⊃RE | LC | 6 C | C | 6 | 6 | 31 | 31 | 33 | 33 | 889 | 895 | | 2RE | LO | 60 | C | 6 | 6 | 31 | 31 | 33 | 33 | 953 | 959 | | PRE | LC | 3 C | 3.0 | ć | 6 | 68 | 5.3 | 1.7 | 17 | 1038 | 1029 | | -DRE | LC | 6 C | 15 | 7 | 4 | 11 | 2.0 | 40 | 2.3 | 1089 | 1072 | | PRE | LC | 6 C | C | 6 | 6 | 8 | 163 | 3.3 | 3.3 | 1130 | 1268 | | PRE | LC | 3 C | 3.0 | 6 | 6. | 26 | 18 | 17 | 17 | 1173 | 1303 | | PRE | LO | 6 C | 15 | 7 | 4 | 11 | 20 | 40 | 23 | 1224 | 1346 | | >8 E | LO | 12C | Ç | 8 | 8 | 38 | 7 C | 87 | 87 | 1349 | 1503 | | >RE | ŁC | 120 | 0 | 8 | 8 | 111 | 111 | 87 | 87 | 1547 | 1701 | | PRE | LO | 6 Ç | C | 6 | 6 | 81 | 65 | 3.3 | 33 | 1661 | 1799 | | TORE | LO | 60 | 0 | 6 | 6 | 31 | Эì | 33 | 3.3 | 1725 | 1863 | | PRE | LC | 6 C | C | 6 | 6 | 31 | 31 | 33 | 33 | 1789 | 1927 | | PRE | LC | 6 C | C. | 6 | 6 | 31 | 31 | 33 | 3.3 | 1853 | 1991 | | - 4 | 1 | 60 | 0 | 6 | 6 | 126 | 126 | 33 | 3.3 | 2C12 | 2150 | | 4 | 2 | 6 C | -15 | 6 | 6 | 24 | 25 | 3.3 | 33 | 2069 | 2208 | | 4 | 3 | 6 C | 3 C | 6 | 6 | 36 | 35 | 3.3 | 3/3 | 2138 | 2276 | | 5 | 4 | 3.0 | -30 | 50 | 50 | 3.0 | 24 | 145 | 145 | 2313 | 2445 | | 6 | 5 | 6 C | O | 31 | 31 | 2.2 | 30 | 171 | 173 | 2506 | 2646 | | 7 | 6 | 90 | O. | 3 € | 38 | 4.8 | 55 | 3¢8 | 308 | 2862 | 3009 | | 7 | 7 | 3 C | 0 | 7 | 7 | 49 | 2.3 | 25 | 2 C | 2931 | 3062 | | 8 | 8 | 6.0 | e | 6. | €. | 19 | 28 | 33 | 3.3 | 2993 | 2123 | | . 8 | 9 | 6 C | 3.0 | 16 | 16 | 36 | 34 | 8.8 | 8.8 | 31.07 | 3245 | | 9 | 1 C | 6 C | -15 | 16 | 16 | 35 | 37 | 98 | 8.8 | 3230 | 337C | | - 10 | 1.1 | 90 | G | 6.8 | 68 | 46 | 5.3 | 551 | 55X | 3827 | 3974 | | 10 | 1.2 | 90 | C | 2:3. | 2.3 | 67 | 67 | 186 | 186 | 4080 | 4227 | | 14 | 23 | 3 C | 0 | 14 | 14 | 49 | 33 | 40 | 4 C | 4169 | 4300 | | 16 | 14 | 3.0 | Q. | 5 | 5 | 14 | 14 | 14 | 15 | 4197 | 4329 | | 19 | 15 | 3 C | 3.0 | 7 | 7 | 14 | 13 | 20 | 2 C | 4231 | 4362 | | 21 | 16 | 3 C | -45 | 5.3 | 53 | 14 | 14 | 148 | 148 | 4393 | 4524 | | 21 | 17 | 60 | 1.5 | 2.3 | 23 | 22 | 29 | 127 | 127 | 4541 | 4680 | | 23 | 1.8 | 90 | 0 | 25 | 25 | 50 | 57 | 203 | 203 | 4794 | 4940 | | 24 | 15 | 6.0 | -30 | 23 | 23 | 5.5 | 4.8 | 127 | 127 | 4976 | 5115 | | 25 | 20 | 3.0 | -30 | 10 | 10 | 28 | 20 | 28 | 28 | 5032 | 5163 | | - 25 | 21 | 60 | -15 | 8 | 8 | 20 | 28 | 44 | 44 | 5 C 9 6 | 5235 | | | £ 2 | 2.50 | | 0.0 | 0.0 | 70.00 | - | 10.00 | 222 | 2023 | 2022 | |------|-----|------|------|-----|-----|-------|-----|-------|------|-------|-------| | 25 | 23 | 90 | 15 | 15 | 15 | 67 | 66 | 122 | 122 | 5882 | 6027 | | 26 | 24 | 9.0 | 0 | 3.8 | 28 | 67 | 6.7 | 227 | 227 | 6176 | 6321 | | 26 | 25 | 60 | 0 | 50 | 50 | 5.5 | 48 | 275 | 275 | 6506 | 6644 | | 26 | 26 | 3.C | 30 | 2.8 | 28 | 25 | 22 | 81 | 81 | 6616 | 6747 | | 27 | 27 | 3 C | 45 | 25 | 25 | 14 | 14 | 73 | 73 | 6703 | 6834 | | - 28 | 28 | 3 C | 4.5 | 16 | 16 | 13 | 13 | 46 | 46 | 6762 | 6893 | | | | | | | | | | | | | | | 38 | 29 | 120 | 0 | 6.2 | 62 | 36 | 70 | 664 | 664 | 7462 | 7627 | | 38 | 3.0 | 60 | -30 | 36 | 36 | 79 | 64 | 198 | 198 | 7739 | 7889 | | - 38 | 31 | 6 C | .15 | 13 | 13 | 37 | 36 | 72 | 7.2 | 7848 | 7997 | | 39 | 3.2 | 90 | 15 | 22 | 22 | 4,4 | 51 | 178 | 1.78 | 807C | 8226 | | 4) | 33 | 6 C | -3C | 35 | 35 | 52 | 46 | 193 | 193 | 8315 | 8465 | | 41 | 34 | 9.0 | 0 | 108 | 108 | 5 C | 57 | 875 | 875 | 9240 | 9397 | | 41 | 35 | 6 C | 15 | 18 | 18 | 57 | 49 | 99 | 99 | 9396 | 9545 | | 41 | 36 | 3 C | 30 | 2.8 | 28 | 3 C | 22 | 81 | 81 | 95C7 | 9648 | | 42 | 37 | 6.0 | 15 | 19 | 19 | 21 | 29 | 105 | 105 | 9633 | 9782 | | - 43 | 3.8 | 60 | -30 | 26 | 26 | 34 | 36 | 143 | 143 | 9810 | 9961 | | 4.8 | 39 | 6 C | -15 | 33 | 33 | 36 | 35 | 182 | 182 | 16 | | | - 53 | 40 | 3 C | -15 | 29 | 29 | 30 | 21 | 84 | 84 | | | | | | | | | | | | | | 10142 | 10283 | | - 54 | 41 | 3.0 | 45 | 7 | 7 | 14 | 14 | 20 | 20 | 10176 | 10317 | | 56 | 42 | 3 C | 45 | 13 | 1.3 | 24 | 14 | 38 | 3.8 | 10228 | 10369 | | 57 | 43 | | , C | 89 | 89 | 3.2 | 48 | 720 | 72 C | 10980 | 11137 | | 57 | 44 | 3 C | 0 | 5 | 5 | 49 | 33 | 15 | 15 | 11044 | 11185 | | 5 € | 45 | 90 | -15 | 122 | 122 | 3 C | 47 | 988 | 988 | 12062 | 12220 | | 58 | 46 | 3 C | -30 | 7 | 7 | 49 | 33 | 20 | 2.0 | 12131 | 12273 | | 59 | 47 | 60 | 15 | 31 | 31 | 21 | 28 | 171 | 171 | 12323 | 12472 | | - 68 | 48 | 3 C | c | 4 | 4 | 29 | 21 | 12 | 1.2 | 12364 | 12505 | | 7.0 | 49 | 60 | 15 | 22 | 22 | 22 | 29 | 121 | 121 | 12507 | 12655 | | 71 | 50 | 120 | 0 | 35 | 35 | 64 | 81 | 375 | 375 | 12946 | 13111 | | 73 | 51 | 90 | 15 | 65 | 65 | 91 | 83 | 527 | 527 | 13564 | 13721 | | 76 | 52 | 90 | 0 | 16 | 16 | 68 | 68 | 130 | 130 | 13762 | 13919 | | | | | | | | | | | | | | | 8 C | 53 | 90 | 0 | 37 | 37 | 67 | 67 | 300 | 300 | 14129 | | | 81 | 54 | 3.0 | C | 14 | 14 | 50 | 35 | 41 | 41 | 14220 | 14362 | | 86 | 55 | 60 | -30 | -50 | 2.0 | 22 | 31 | 110 | 110 | 14352 | 14503 | | 27 | 56 | 6 C | -30 | 26 | 26 | 38 | 38 | 143 | 143 | 14533 | 14684 | | 87 | 57 | 13C | C | 68 | 68 | 67 | ક 🏃 | 728 | 728 | 15328 | 15493 | | - 88 | 5,8 | 90 | 0 | 25 | 2.5 | 90 | 8.2 | 203 | 203 | 15621 | 15778 | | 99 | 59 | 6 C | 15 | LC | 10 | 57 | 48 | 55 | 55 | 15733 | 15881 | | 89 | 6 C | 3 C | 30 | 26 | 26 | 25 | 22 | 75 | 75 | 15837 | 15978 | | 89 | 67 | 9 C | 0 | 26 | 26 | 33 | 50 | 211 | 211 | 16081 | 16239 | | 9.0 | 62 | 60 | -15 | 12 | 12 | 58 | 50 | 66 | 56 | 16205 | 16355 | | 96 | 63 | 60 | -30 | 8 | 8 | 37 | 37 | 44 | 44 | 16286 | 16436 | | 97 | 64 | 60 | 30 | 16 | 16 | 37 | 3.5 | 88 | 88 | 16411 | 16559 | | TLG3 | 65 | 90 | ō | 86 | 86 | 45 | 54 | 697 | 697 | 17153 | 17310 | | 104 | 66 | 6.0 | -15 | 3.8 | 38 | 52 | 45 | 209 | 209 | 17414 | 17564 | | 104 | | 9.0 | 15 | 2.8 | | | | 227 | 227 | 17684 | 17840 | | | 6.7 | | | | 28 | 43 | 49 | | | | | | 1.05 | 68 | 60 | C | 41 | 41 | 52 | 45 | 226 | 226 | 17962 | 18111 | | 1.05 | 65 | 12C | 0 | 35 | 35 | 62 | 78 | 375 | 375 | 18399 | 18564 | | 106 | 7 C | 3.0 | - 30 | 6.5 | 65 | 71 | 4.8 | 189 | 189 | 18659 | 18801 | | 1.06 | 71 | 6 C | 30 | 34 | 34 | 21 | 28 | 187 | 187 | 18867 | 19016 | | | | | | | | | | | | | | 169 kC7 176 kC8 171 109 171 110 176 114 184 115 185 116 186 117 188 113 199 119 200 120 -200 121 12C 6 C 3 C 6C 6C 6 C 6 C 6 C 6 C C -30 -15 C C 3.0 C -15 ģ Ó 5.6 BIF-007/D-0081-74 Hx 100 SECOLO 105 23871 24019 356 24274 24431 97 24420 24561 26 24460 24602 88 24722 24871 88 24848 24997 105 24989 25138 83 25109 25258 284 25442 25599 105 25604 25753 66 25706 25857 286 26028 26177 39 26103 26253 23 26155 26296 364 26569 26734 116 24597 24747 6.5 | C05 | 513 | 728 | 2 | . × | | | Approv | ed for Re | lease: 2 | 025/06/18 | C05137282 | |------|-----|-----|-----|-----|----|----|--------|-----------|----------|-----------|-----------| | 201 | 122 | 3 C | C | 10 | 10 | 74 | 51 | 29 | 29 | 26672 | 26814 | | 202 | 123 | 6 C | 0 | 46 | 46 | 21 | 29 | 253 | 253 | 26946 | 27095 | | -2C3 | 124 | 3 C | 30 | 31 | 31 | 29 | 21 | 90 | 90 | 27065 | 27206 . | | :16 | 125 | 3 C | 3 C | 14 | 14 | 14 | 14 | 41 | 41 | 27120 | 27261 | | 216 | 126 | 120 | 0 | 3 č | 36 | 51 | 75 | 385 | 385 | 27556 | 27721 | | 216 | 127 | 60 | 15 | 19 | 19 | 82 | 65 | 105 | 105 | 27743 | 27891 | | 218 | | 3 C | 15 | 4 | 4 | 29 | 22 | 12 | 12 | 27784 | 27925 | | 218 | 129 | 6 C | C | 22 | 22 | 22 | 3.0 | 121 | 121 | 27927 | 28076 | | 225 | 13C | 3 C | 30 | 7 | 7 | 29 | 21 | 20 | 2 C | 27976 | 28117 | | ₹25 | 131 | 60 | · C | 4 | 2 | 21 | 3 C | 22 | 15 | 28019 | 28162 | BIF-007/D-0081-74 BIF-007/D-0081-74 1208-2 6.0 3 C -15 6 C 3.0 6 C 273 255 281 156 282 157 284 158 285 159 279 161 300 162 3CI 164 313 165 313 166 329 168 329 169 330 171 331 172 _332 173 -329 170 314 167 _300 163 -291 16C 9.8 Q ¢ C ¢ C C 3 C 30 -30 60 -30 -15 9.8 1.3 €5 8.8 1.05 8.8 3.8 31 C 7 C | . B. | CAI | MERA | CPER |) ITA | 243 | SUMMA | LRY: | REV | 225, | CP 131 | THPCL | GH- REV | 674, | OP 364. | 1 | |----------|-----|------|------|-------|-----|-------|------|------|------|--------|-------|---------|--------|---|---------| | REV | MSA | SCA | SCC | FRAI | ES | INTE | | PHCT | C-FT | CUM-TU | -FEET | | 700 | 026828 | <u></u> | | patrice. | NUM | | | FWC | AFT | FWD | | FWD | AFT | FWD | AFT | I I I | a seri | do ma and a second | | | 225 | 131 | 6 C | 0 | 7 | ç | 0 | 0 | 43 | 51 | 43 | 51 | | | *************************************** | 1 | | 230 | 132 | 3.0 | -3¢ | 4 | 4 | 85 | 81 | 12 | 12 | 144 | 144 | | | | | | -232 | 133 | 6 C | 15 | 3.1 | 31 | 2.2 | 29 | 171 | 171 | 337 | 344 | | | | | | 232 | 134 | 90 | G | 59 | 59 | 49 | 57 | 478 | 478 | 864 | 879 | | | | | | 239 | 135 | 3 (| -15 | 6 | 6 | 49 | 33 | 17 | 17 | 930 | 929 | | | | | | _235 | 136 | 60 | C | -8 | 8 | 2 C | 29 | 44 | 44 | 994 | 1002 | | | | | | 2.3 € | 137 | 3 € | 3 C | 8 | 8 |
29 | 20 | 23 | 23 | 1046 | 1045 | | | | | | 247 | 138 | 120 | C | 26 | 26 | 38 | 62 | 278 | 278 | 1362 | 1385 | | | | | | 248 | 139 | 6 C | 15 | 16 | 16 | 69 | 53 | 8.8 | 8.8 | 1519 | 1526 | | | | | | 724.8 | 140 | 30 | -3.C | 26 | 26 | 28 | 21 | 75 | 75 | 1622 | 1622 | | | * | | | 248 | 141 | 9 C | -15 | 54 | 54 | 3.5 | 51 | 437 | 437 | 2094 | 2110 | | | | | | 249 | 142 | -9€ | C | 19 | 15 | 69 | 68 | 154 | 154 | 2317 | 2332 | | | | | | -250 | 143 | 60 | 15 | 31 | 31 | 54 | 46 | 171 | 171 | 2542 | 2549 | | | | | | 250 | 144 | 9 C | C | 10 | 1.0 | 47 | 5.5 | 81 | 81 | 267C | 2685 | | | | | | 25% | 145 | 60 | 15 | 16 | 1.6 | 54 | 46 | 88 | 8.8 | 2812 | 2819 | | | | | | 251 | 146 | 6 C | 15 | 44 | 44 | 37 | 3.7 | 242 | 242 | 3091 | 3098 | | | | | | 252 | 147 | 6 C | -15 | 8 | 8 | 34 | 35 | 44 | 44 | 3169 | 3177 | | | | | | 252 | 148 | 3 C | -15 | 16 | 16 | 27 | 19 | 46 | 46 | 2342 | 3242 | | | | | | 253 | 149 | 3 C | 15 | 10 | 1 C | 14 | 13 | 29 | 29 | 3285 | 3284 | | | | | | ~253 | 150 | 6 C | -15 | 23 | 23 | 20 | 29 | 127 | 127 | 3432 | 3440 | | | | | | 258 | 151 | 3 C | -15 | 6 | 6 | 30 | 22 | 17 | 1.7 | 3479 | 3479 | | | | | | 268 | 152 | 3 C | -30 | 23 | 23 | 14 | 13 | 67 | 67 | 3560 | 3559 | | | | | | -268 | 153 | 3 C | -3C | 14 | 14 | 14 | 15 | 41 | . 41 | 3615 | 3615 | | | * | | | 269 | 154 | 6 C | 15 | 16 | 10 | 20 | 27 | 8.8 | 88 | 3723 | 3730 | | | | | | C0! | 513 | 728 | 32 | * | | | Annro | wod for D | ologog: 1 | 2025/06/19 | 3 C05137282 | |-------------|-------|------------|-----|-----|-------------|-----|---------|-----------|-----------|------------|-------------| | 3.8 | 174 | 3.0 | 3.6 | 4 / | 3 2 | 3 4 | | | | | | | 338 | 175 | 3.0 | 3 C | 16 | 16 | 14 | 14 | 46 | 46 | 8400 | 8399 | | | | | C | 8 | 8 | 14 | 15 | 23 | 23 | 8437 | 8437 | | .338 | 176 | 3 C | 15 | 8 | 8 | 14 | 13 | 23 | 23 | 8474 | 8473 | | 43 | 177 | 3.0 | -15 | 4 | 4 | 14 | 15 | 12 | 1.2 | 8500 | 8500 . | | 545 | 178 | 60 | 0 | 61 | 61 | 22 | 29 | 336 | 336 | 8858 | 8865 | | 346 | 179 | 3 C | -15 | 16 | 16 | 29 | 22 | 46 | 46 | 8933 | 8933 | | 46 | 180 | 3 C | 3 C | 13 | 13 | 14 | 13 | . 38 | 3 € | 8985 | 3984 | | 47 | 181 | 3 C | -45 | 14 | 14 | 14 | 15 | 41 | 41 | 5 C4 C | 9040 | | 347 | 182 | 3 C | -45 | 17 | 17 | 14 | 14 | 49 | 49 | 9103 | 9103 | | 748 | 183 | 3 C | C | 25 | 25 | 14 | 14 | 73 | 73 | 9190 | 9190 | | -48 | 184 | 3 C | -30 | 9 | 9 | 14 | 14 | 26 | 26 | 9230 | 923C | | 349 | 185 | 6 C | C | 32 | 32 | 22 | 29 | 176 | 176 | 9428 | 9435 | | _355 | 186 | 3.C | -30 | 14 | 14 | 29 | 22 | 41 | 41 | 9498 | 9498 | | 156 | 187 | 3 C | 30 | 11 | 11 | 15 | 13 | 3.2 | 32 | 9845 | 9543 | | 359 | 188 | 3 C | 45 | 4 | 4 | 14 | 14 | 12 | 1.2 | 9571 | 9569 | | 361 | 189 | 6 C | -15 | 34 | 34 | 22 | 30 | 187 | 187 | 9780 | 9786 | | 163 | 190 | 120 | C | 2.8 | 28 | 64 | 80 | 300 | 30C | 10144 | 10166 | | :64 | 191 | 6 C | -3C | 11 | 11 | 8 C | 6.5 | 61 | 61 | 1C285 | 10292 | | 365 | 192 | 3 C | -45 | 13 | C | 3.0 | 0 | 38 | Ċ | 10353 | 10292 | | 365 | 193 | 30 | С | 6 | 6 | 14 | 21 | 17 | 17 | 10384 | 10330 | | 17C | 194 | 30 | 45 | 1 C | 10 | 13 | 13 | 29 | 29 | 10426 | 10372 | | 376 | 195 | 3 C | 45 | 25 | 0 | 13 | C | 73 | C | 10512 | 10372 | | 378 | 196 | 3.0 | C | 19 | 19 | 14 | 14 | 55 | 5.5 | 10581 | 10441 | | 379 | 197 | 3 Ç | -15 | ŝ | · · · · · · | 14 | 14 | 26 | 26 | 10621 | 10481 | | 379 | 198 | 30 | 45 | 13 | 13 | 14 | 13 | 38 | 3.8 | 10673 | 10532 | | 381 | 199 | 3·C | -30 | 4 | 1 | 14 | 15 | 12 | 12 | 10699 | 10559 | | 381 | 200 | 3 C | 30 | 43 | 43 | 14 | 13 | 125 | 125 | 10838 | 10697 | | 382 | 201 | 3 C | 45 | 7 | 7 | 14 | 14 | 21 | 21 | 10873 | 10732 | | 383 | 2 C 2 | 30 | 45 | 7 | 7 | 15 | 15 | 21 | 21 | 10909 | 10768 | | -389 | 203 | 3.0 | -30 | 4 | 4 | 14 | 15 | 12 | 12 | 10935 | 10795 | | 394 | 204 | 90 | 0 | 28 | č | 27 | Č | 227 | 2 2 | 11189 | 10795 | | 394 | 205 | 3 0 | -15 | 4 | 4. | 44 | 14 | 12 | 12 | 11245 | 10821 | | 394 | 2.C.6 | 6 C | Ĉ | 15 | 15 | 22 | 29 | 83 | 83 | 11350 | 10933 | | | 207 | 60 | 15 | 35 | 35 | 35 | 35 | 193 | 193 | 11578 | 11161 | | 396 | 208 | 90 | -15 | 3 C | 3 C | 46 | 55 | 243 | 243 | 1,867 | 11459 | | 396 | 209 | 30 | 3.0 | 11 | 11 | 48 | 31 | 32 | 3.2 | 11947 | 11522 | | 396 | 210 | 30 | -30 | 63 | 63 | 14 | 15 | 183 | 183 | 12144 | 11720 | | 399 | 211 | 30 | 15 | 15 | 1.5 | 34 | 12 | 55 | 55 | 12213 | 11787 | | 399 | 212 | | 45 | 16 | 10 | 12 | 13 | 29 | 29 | 12254 | 11829 | | -410 | 213 | 3.C
3.C | -30 | 1.7 | 17 | | 15 | | 49 | | | | | | | | | A. / | 14 | | 49 | C | 12317 | 11853 | | 411 | 214 | 9 C | 15 | 31 | | 28 | 0
27 | 251 | | 12596 | 11893 | | 412
_412 | 215 | 60 | 15 | 29 | 29 | 50 | | 160 | 160 | 12806 | 1208C | | | 216 | 60 | -30 | 3.0 | 30 | 35 | 37 | 165 | 165 | 13006 | 12282 | | 412 | 217 | 3 C | -15 | 23 | 23 | 30 | 21 | 67 | 6.7 | 13103 | 1237C | 413 219 413 220 414 221 414 222 -415 223 30 45 3C -15 30 -45 30 15 3C -3C 3 C C 16 6 G 10 4 11 16 6 10 11 4 14 14 14 14 13 14 1.3 15 14 13 14 14 46 17 26 29 12 32 BIF-007/D-0081-74 46 13163 12429 17 13194 12461 26 13234 12501 29 13277 12543 12 13302 12569 32 13348 12615 5 C 3 C -0 1.3 1(5 193 14386 13660 73 14487 13754 73 14574 13841 35 14782 14049 29 14825 14091 105 15119 14393 215 15383 14665 81 15512 14778 29 15555 14822 29 15598 14864 23 15635 14902 12 15661 14927 12 15687 14953 119 16115 15184 64 16193 15262 20 16227 15296 57 16318 15402 99 16526 15535 12 16552 15561 15 16817 15826 72 16909 15926 29 16966 15974 17C12 16021 17046 16055 17098 16106 17153 16162 17322 16339 29 17196 16204 20 17372 16381 83 17476 16492 83 17595 16611 38 1778C 16789 104 17728 16737 203 18614 17638 121 18190 17207 316 18556 17580 81 18686 17694 17C 16754 15779 C 16413 15402 0 15853 14953 84 15982 15051 14952 14227 14994 14261 121 14717 13992 1.2 2.8 1.0 I.C F 1 C 2 C -30 -15 O 3 Č. -15 143 230 43 231 445 232 H46 233 .51 234 459 235 459 236 160 237 461 238 461 239 162 24C 162 241 462 242 462 243 162 244 467 245 473 246 177 247 +78 248 478 249 778 25C 180 251 491 252 491 253 193 254 493 255 493 256 494 257 w94 Z58 496 262 -490 263 508 264 509 265 510 266 510 267 510 268 510 269 511 270 511 271 511 272 -512 273 200€ 3C -15 6 C 3:C 3.0 6 C 3 C 9.0 3 C 3 C 3 C 30 -15 3 C 3 C 30 -45 30 -30 3 C 6 C 3 C 3 C 3.0 3.0 3 C 6 C 3 C 9.0 30 -15 36 -36 30 -15 3C -15 -15 -45 3 C -45 -15 - 30 3 C C C C 3 C -15 -15 C Ĉ LC 1C BIF-007/D-0081-74 Hx TOP SECRET | C05 | 513 | 728 | 32 | | | | Λ | ved for D |) alas | 000E/00/11 | | | | | |------|------------|------|----------|--------|----------|-----|----------|-----------|-----------------|----------------|----------------|--------|--------------------------|-----------| | | | | 3 | | pry regs | 20 | | | | | 3 C05137282 | BIF-00 |)7/D-008 | 31-74 | | | 274
275 | S C. | C
-45 | 27 | 27 | 3.5 | 51 | 219 | | 18940 | | | America Mariante America | | | - | 276 | 30 | 30 | 14 | 14 | 49 | 34 | 41 | | 19030
19082 | | | 87 FD FD | gran raid | | | 277 | 3.0 | 30 | 14 | 14 | 14 | 13 | 38
41 | 3.8 | 19137 | | HX | | DEG | | | 278 | 3 C | 30 | 22 | 22 | 14 | 14 | | | | | 0 83.7 | Mi Jensey | - | | | 275 | 30 | -3C | 18 | 18 | 14 | 14
15 | 64 | | 19215 | 18223 | | | | | 25 | 28C | 30 | 3 C | # C | | 15 | 14 | 52 | 52 | | | | | | | 526 | 281 | 3 ¢ | 30 | 4 | 8 | 14 | 14 | 23
12 | 23 | | 18327
18353 | | | | | | 282 | 60 | C | 19 | 15 | 22 | 3 C | 105 | 105 | 19472 | | | | | | -27 | 283 | 3 C | 45 | 4 | 47 | 29 | 21 | 1.2 | 12 | | 18521 | | | | | | 284 | 3.0 | -3C | 10 | 10 | 14 | 15 | 30 | | 19557 | | | | | | | 285 | 3 C | -15 | 14 | 14 | 14 | 14 | 41 | 41 | 19612 | 13621 | | | | | | 286 | 30 | 45 | 7 | 7 | 14 | 13 | 20 | | 19646 | | | | | | 32.8 | | 90 | ć | 35 | 35 | 34 | 50 | 284 | | 19964 | | | | | | 528 | 288 | 3.0 | -30 | 21 | 21 | 49 | 33 | 61 | | | 19082 | | | | | | 289 | 3 C | -30 | 4 | 4 | 14 | 14 | 12 | | 26100 | | | | | | | 290 | | -3C | 7 | 7 | 14 | 13 | 20 | | 20134 | 19141 | ŧ. | | | | | 291 | | -15 | 16 | 16 | 14 | 14 | 46 | | 20194 | | | 6. | | | 541 | 292 | | -15 | 35 | 35 | 20 | 28 | 193 | | 20407 | | | | | | | 293 | | -15 | 25 | 25 | 29 | 20 | 73 | | 20509 | | | | | | 42 | 254 | | -15 | 13 | 13 | 14 | 15 | 38 | | 20561 | | | | | | 542 | 295 | | -15 | 14 | 14 | 14 | 14 | 41 | | 20616 | | | | | | | 296 | | -15 | 7 | 7 | 13 | 13 | 20 | | 20649 | | | | | | 543 | 297 | 90 | Ć | 3.5 | 35 | 29 | 44 | 284 | 284 | | 19984 | | | | | | 258 | 3.C | -45 | 3.2 | 32 | 44 | 29 | 93 | | 21099 | | | | | | | 255 | 30 | C | 3. | 8 | 14 | 13 | 23 | 23 | 21136 | | | | | | | 300 | | -3C | 36 | 36 | 13 | 14 | 104 | | 21253 | | | | | | 544 | 3C1 | 30 | -30 | 15 | 15 | 14 | 14 | 44 | | 21311 | | | | | | 548 | 302 | | -30 | 13 | 13 | 21 | ∠9 | 72 | | 21404 | | | | | | 556 | 303 | 30 | -15 | ì.C | 10 | 29 | 21 | 29 | 2.5 | 21462 | | | | | | 559 | 3C4 | 6.C | 15 | 25 | 25 | 19 | 26 | 139 | | 21619 | 20633 | | | | | 555 | 305 | 3 C | -15 | 4 | 4 | 27 | 19 | 12 | | 21658 | | | | | | -559 | 306 | 30 | -30 | 4 | 4 | 14 | 15 | 12 | | 21684 | | | | | | 559 | 307 | 30 | 15 | å | 4 | 13 | 13 | 12 | 1.2 | 21709 | 20716 | | | | | 560 | 308 | 30 | 0 | 13 | 13 | 14 | 12 | 38 | 38 | 21761 | 20757 | | | | | 561 | 309 | 30 | -45 | Žć | 26 | 13 | 14 | 73 | 7.5 | 21849 | | | | | | Lòc | 31 C | 3 C | 15 | 16 | 16 | 14 | 13 | 46 | 46 | 21909 | | | | | | | 311 | 6 C | 15 | 14 | 14 | 22 | 30 | 77 | | 22008 | | | | | | 572 | 312 | 30 | -30 | 35 | 35 | 29 | 22 | 102 | | 22139 | | | | | | 574 | 313 | έC | -15 | 26 | 26 | 21 | 29 | 143 | | 223C3 | 21318 | | | | | 574 | 314 | 90 | 0 | 31 | 31 | 49 | 56 | 251 | 251 | 22603 | 21625 | | | | | 575 | 325 | 6.0 | 15 | 34 | 34 | 56 | 47 | 167 | 187 | 22846 | | | | | | _575 | 316 | 30 | -30 | 1 C | ĩc | 28 | 22 | 29 | | 22903 | | | | | | 575 | 317 | 3.0 | -30 | 4 | 4 | 14 | 14 | 12 | 12 | 22929 | | | | | | 575 | | | -15 | 3.2 | 1.2 | 14 | 14 | 35 | | 22978 | | | | | | 212 | 24.0 | 20 | 4.0 | Se die | A CO | 表"" | 7.77 | برد | جدر کان
سعاد | EE.710 | E.B 9 G.A | | | | 1.0 1,3 14 20 10 1,3 14 20 30 15 0 15 3 C 3 C 6 ¢ 6 C 6 C 3.0 576 319 576 32C 590 321 590 322 7591 323 14 22
36 36 2.8 13 36 3.6 36 20 29 72 77 110 20 29 23021 22027 72 23115 22129 77 23228 22242 110 23374 22388 20 23422 22428 592 325 9 C 3 C Approved for Release: 2025/06/18 C05137282 64 23500 22506 160 25709 24715 96 25819 24826 BIF-007/D-0081-74 PEPDES 178 23710 22732 593 326 6 C 138 23903 22917 103 327 -30 88 24C26 23O41 J04 328 3 C 99 24154 23160 -15 606 329 2.5 6 C 138 24314 23328 507 33C C 55 24406 23420 108 331 3 C 29 24464 23470 508 332 3 C 237 24723 23737 -15 -:22 333 138 24898 23913 123 334 105 25053 24075 381 25501 24523 625 335 £26 336 3 C :26 337 -30 029 338 -15 3.0 631 339 6.0 -30 34C 3 C 3 C 3 C -3C **-639 343** :41 6 C C -30 3 C 3 C C 553 347 -3C -15 354 348 6 C 655 349 3 C 356 350 3Ċ 556 351 656 352 3.0 -557 353 -3C 157 354 669 355 3 C 669 356 6 C :71 357 -45 3 C 271 358 -15 671 359 -15 3 C ő 372 360 572 361 3 C -30 1.0 673 362 Ċ -673 363 6 C 1.7 574 364 ς 32 25865 24872 5C 25937 24952 23 25590 24996 81 26085 25092 26134 25141 26198 25205 88 26306 25320 232 26565 25572 38 26617 25623 267CO 25715 8E 26825 2584C 2 C 26875 25881 72 26968 25982 15 27012 26018 15 27 042 26048 67 27122 16129 389 27543 26565 46 27637 26643 88 27747 26761 20 27796 26803 176 27994 27009 17 28041 27048 136 26201 27215 29 28259 27286 275 28567 27589 94 28717 27731 65 28846 27854 Approved for Release: 2025/06/18 C05137282 1208-3 В. CAMERA OPERATIONS SUMMARY REV 674 CP 364 THROUGH REV 1111 OP 577 | 3EV | MSN
CP | SCA | scc | FRAI | 4 E S | INT | ERCP | PHOT | C-FT | CUM-TU | -FEET | |---------|-----------|------|--|------|------------|-----|------|-------|------|---------|--------| | series. | | | all the same of th | e | 8 27 T | | | 20.00 | | e 1 / 2 | A POTE | | | NUM | | | FWC | AFT | FWD | AFT | FWD | AFT | FhD | AFT | | :74 | 364 | 90 | 0 | 2 | 3 | C | 0 | 11 | 26 | 11 | 26 | | 685 | 365 | 90 | C | 37 | 37 | 13C | 130 | 300 | 300 | 441 | 456 | | -686 | 366 | 3.0 | 730 | 13 | 1.3 | 49 | 33 | 38 | 38 | 528 | 5.27 | | 18.6 | 367 | 3.C | 3 C | 11 | 11 | 14 | 13 | 32 | 32 | 574 | 572 | | 687 | 368 | 3 C | -45 | 32 | 32 | 14 | 15 | 93 | 9:3 | 681 | 680 | | 687 | 369 | 90 | С | 53 | 5.3 | 34 | 50 | 429 | 429 | 1144 | 1159 | | 389 | 37C | 3 C | 45 | 7 | 7 | 49 | 31 | 20 | 2.0 | 1213 | 1210 | | 389 | 371 | 6 C | C | 17 | 17 | 21 | 3 C | 94 | 94 | 1328 | 1334 | | 696 | 372 | 30 | 0 | 18 | 18 | 25 | 21 | 52 | 5.2 | 1409 | 1407 | | -7C1 | 373 | 3 C | -3C | 4 | 4 | 14 | 15 | 12 | 12 | 1435 | 1434 | | /C1 | 374 | 9 C | С | 14 | 14 | 34 | 49 | 332 | 332 | 1801 | 1815 | | 702 | 375 | 3 C | 30 | 25 | 25 | 49 | 33 | 73 | 73 | 1923 | 1921 | | -7C4 | 376 | 30 | 30 | 7 | 7 | 14 | 14 | 20 | 2.0 | 1957 | 1955 | | 764 | 377 | 3.0 | 30 | 16 | 16 | 14 | 14 | 46 | 46 | 2017 | 2015 | | 705 | 378 | 6 C | -15 | 32 | 3.2 | 22 | 31 | 176 | 176 | 2215 | 2222 | | 706 | 379 | 3 C | 15 | 4 | 4 | 30 | 21 | 12 | 12 | 2257 | 2255 | | 706 | 380 | 3.0 | 30 | 2 C | 20 | 14 | 14 | 58 | 58 | 2329 | 2327 | | 714 | 381 | 60 | 15 | 10 | 10 | 21 | 29 | 55 | 55 | 2405 | 2411 | | 715 | 392 | 3.0 | 45 | 4 | 4 | 28 | 20 | 12 | 12 | 2445 | 2443 | | 717 | 383 | 30 | -30 | 7 | 7 | 14 | 15 | 20 | 20 | 2479 | 2478 | | 72.7 | 284 | 60 | 30 | 19 | 19 | 1.8 | 24 | 105 | 105 | 2602 | 2607 | | 718 | | | | | | 33 | | 265 | 165 | | | | | 3.85 | 3.6 | 0 | 30 | 3 C
2 5 | | 34 | 73 | | 2800 | 2806 | | -720 | 366 | 3.0 | -3C | 25 | | 29 | 2.2 | | 73 | 2902 | 2901 | | 721 | 387 | 6 C | 1.5 | 34 | 34 | 22 | 29 | 187 | 167 | 3111 | 3117 | | 728 | 388 | 3 C. | 0 | 22 | 22 | 29 | 22 | 64 | 64 | 3204 | 3203 | | 730 | 389 | 3.0 | -3C | 13 | 13 | 14 | 1.3 | 3.8 | 3.8 | 3256 | 3254 | | 734 | 390 | 60 | -15 | 5 C | 5.0 | 19 | 28 | 275 | 275 | 3550 | 3557 | | 735 | 35% | 3 C | 30 | . z. | 32 | 29 | 20 | 93 | 93 | 3672 | 3670 | | 736 | 365 | 6 C | 15 | 25 | 29 | 21 | 29 | 160 | 160 | 3853 | 3859 | | 736 | 3 53 | 90 | Ç | ê. | 21 | 45 | 53 | 170 | 170 | 4C68 | 4082 | | ?37 | 354 | 90 | C | 35 | 25 | 67 | 67 | 284 | 284 | 4419 | 44.32 | | 737 | 395 | 30 | -15 | 4 | A | 49 | 3.4 | 1.2 | 12 | 448C | 4679 | | -738 | 396 | 3 € | -3C | 11 | 1.1 | 14 | 1 | 3.2 | 32 | 4526 | 4525 | | 744 | 357 | 3 C | Ç. | č | 5 | 14 | 14 | 15 | 15 | 4555 | 4554 | | 749 | 398 | 3 C | 3 C | 19 | 19 | 14 | 3.7 | 5.5 | 5.5 | 4624 | 4622 | | 752 | 355 | 90 | 0. | 14 | 14 | 32 | 4.8 | 113 | 113 | 4765 | 4783 | | 767 | 400 | 3 C | 15 | 22 | 22 | 48 | 32 | 64 | 64 | 4881 | 4879 | | 768 | 401 | 6C | -15 | 13 | 13 | 21 | 29 | 72 | 7.2 | 4974 | 498C | | 77C | 402 | 3 C | -30 | 7 | 7 | 29 | 21 | 20 | 2 C | 5023 | 5021 | | 771 | 403 | 30 | 3 C | 13 | 13 | 14 | 13 | 3.8 | 3.8 | 5C75 | 5072 | | 7.75 | 404 | 3€ | 30 | E | 6 | 14 | 14 | 1.7 | 17 | 5106 | 5103 | | 784 | 405 | 90 | 0 | 28 | 2.8 | 31 | 4.7 | 227 | 227 | 5364 | 5377 | | -785 | 406 | 3€ | 45 | 19 | C | 45 | C | 55 | C | 5464 | 5377 | | Approved for | Release: | 2025/06/18 | C0513728 | |---|----------|------------|----------| | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | Approv | ed for Re | lease: 20 | 25/06/18 | 051372 | |---|--------|-----------|-----------|----------|--------| | 3 | 31 | 23 | 23 | 5500 | 5431 | | 1 | 28 | 105 | 105 | 5626 | 5564 | | 9 | 22 | 41 | 41 | 5695 | 5627 | | 9 | 26 | 77 | 77 | 5751 | 5730 | 82 BIF-007/D-008I-74 | * | | | | |---|----|-----|-----------------| | - | HX | 707 | SECTION TO | | | | | approximately a | | | | | 1 | | | | Approv | ed for Re | lease: 2 | 025/06/18 | C05137282 | |--------|------|-----|-----|-----|-----|-----|--------|-----------|----------|-----------|-----------| | 165 | 467 | 3 C | -30 | 8 | 8 | 13 | 31 | 23 | 23 | 5500 | 5431 | | 185 | 408 | 6 C | 30 | 19 | 19 | 21 | 28 | 105 | 105 | 5626 | 5564 | | | 409 | 3 C | 15 | 14 | 14 | 29 | 22 | 41 | 41 | 5695 | 5627 | | perhan | 410 | 60 | 15 | 14 | 14 | 19 | 26 | 77 | 77 | 5751 | 5730 | | | 411 | 60 | Č | 30 | 30 | 32 | 32 | | 165 | 5588 | 5927 | | | 412 | | | | | | | 165 | | | | | | * | 60 | C | 65 | 65 | 3.4 | 34 | 358 | 358 | 638C | 6319 | | | 413 | 6 C | 15 | 22 | 0 | 34 | C | 121 | C | 6535 | 6319 | | 100 | 414 | 6 C | 15 | 24 | 24 | 34 | 36 | 132 | 132 | 6701 | 6487 | | 800 | 415 | 3.0 | -30 | 8 | 8 | 28 | 28 | 23 | 23 | 6752 | 6531 | | _801 | 416 | 3 C | 15 | 7 | 7 | 14 | 13 | 2.0 | 2 C | 6786 | 6564 | | 301 | 417 | 3 C | -30 | 13 | 13 | 13 | 14 | 3.8 | 36 | 6837 | 6616 | | 801 | 418 | 3 C | 15 | 11 | 11 | 14 | 14 | 32 | 32 | 6883 | 6662 | | | 419 | 3 C | C | 8 | 8 | 15 | 14 | 23 | 23 | 6921 | 6659 | | 301 | 420 | 6 C | 15 | 35 | 35 | 23 | 32 | 193 | 193 | 71.37 | 6924 | | 302 | 421 | 30 | 3.0 | 7 | 7 | 30 | 21 | 20 | 20 | 7187 | 6965 | | | 422 | 30 | -30 | 7 | 7 | 14 | 15 | 20 | 20 | 7221 | 7000 | | | | | | | | 15 | | | | | | | | 423 | 6 C | -3C | 29 | 29 | | 27 | 168 | 168 | 7408 | 7195 | | 315 | 424 | 3.0 | 15 | 19 | 19 | 27 | 8.1 | 55 | 55 | 7490 | 7268 | | | 425 | 3 C | C | É | 6 | 14 | 15 | 18 | 3.1 | 7522 | 7301 | | | 426 | 3 C | 3 C | 28 | 28 | 14 | 13 | 81 | 81 | 7617 | 7395 | | | 427 | 3 C | -3C | 25 | 25 | 14 | 15 | 7.3 | 73 | 7704 | 7483 | | 819 | 428 | 3 C | 15 | 4 | 4 | 14 | 1.3 | 12 | 12 | 7730 | 7508 | | 819 | 429 | 6 C | 15 | 25 | 25 | 23 | 31 | 138 | 138 | 7891 | 7677 | | 129 | 430 | 3 C | 3 C | 4 | 4 | 29 | 2.1 | 12 | 12 | 7932 | 771C | | 331 | 431 | 9.0 | 0 | 68 | 68 | 3.3 | 50 | 551 | 551 | 8516 | 8311 | | 831 | 432 | 90 | Č | 16 | 16 | 7). | 7 C | 130 | 13C | 8717 | 8511 | | -333 | 433 | 3 (| -30 | 22 | 22 | 49 | 34 | 64 | 64 | 6830 | 86C9 | | 333 | 434 | 3 C | -30 | 5 | 5 | 14 | 14 | 1.5 | 15 | 8859 | 8638 | | 823 | 435 | 3 C | 30 | 4 | 4 | 14 | 13 | 12 | 12 | 8885 | 8663 | | 834 | | | | 19 | 19 | 22 | 30 | 105 | 105 | 9012 | 8798 | | | 436 | 60 | 15 | | | | | | | | | | 135 | 437 | 3 C | 30 | 10 | 10 | 29 | 21 | 29 | . 29 | 9070 | 8848 | | | 428 | 3.0 | -30 | 1.0 | 1.0 | 14 | 15 | 29 | 29 | 9113 | 8892 | | | 439 | 6 C | -15 | 11 | 11 | 2.3 | 31 | 61 | 61 | 9297 | 6984 | | | 44 C | 3 C | 30 | 2 C | TC | 29 | c 0 | 29 | 29 | 9255 | 9033 | | 344 | 441 | 3 C | .30 | 43 | 43 | 13 | 14 | 125 | 125 |
9393 | 9172 | | | 442 | 3 C | 45 | 2.8 | 28 | 13 | 12 | 81 | 8.1 | 9487 | 9265 | | -347 | 443 | 90 | .C | 63 | 43 | 34 | 5-C | 348 | 348 | 9869 | 9663 | | 351 | 344 | 3 C | 30 | 10 | 10 | 49 | 33 | 29 | 29 | 9947 | 9725 | | 851 | 445 | 60 | -15 | 20 | 20 | 24 | 33 | 110 | 110 | 10081 | 9368 | | | 446 | 30 | -30 | 12 | 12 | 3.0 | 2.2 | 35 | 35 | 10146 | 9925 | | | 447 | 3 C | 15 | 4 | 4 | 14 | 14 | 12 | 12 | 10172 | 9951 | | | 448 | 3.0 | -30 | 16 | 16 | 14 | 14 | 46 | 46 | 10232 | 10011 | | | 445 | 3 C | 3.0 | 8 | 8 | 1,6 | 14 | 23 | | 10271 | | | | 45C | 30 | -45 | 16 | 16 | 13 | 15 | 46 | | | 10109 | | | 451 | 30 | 30 | 16 | 16 | 14 | 13 | 46 | | 10390 | | | | | 30 | | 7 | 7 | 14 | | 20 | | 10424 | | | | 452 | | 3.0 | | | | 1.A | | | | | | -982 | | 3 C | 0 | 1.0 | 10 | 14 | 14 | 2.9 | | 10467 | | | | 454 | 90 | 0 | 35 | 3.5 | 3.3 | 50 | 284 | | 10784 | | | | 455 | | -15 | 50 | 5 C | 69 | 69 | 405 | | 11258 | | | _888 | 456 | 6 C | -30 | C | 8 | C | 51 | C | 44 | 11258 | 11148 | | | | | | | | | | | | | | -011 506 6 C BIF-007/D-0081-74 0 14845 14449 | C051 | L372 | 82 | | | | Appro | ved for R | elease: 2 | 2025/06/18 | C0513728 | 2 818 00 | ממת מנדו | 1 74 | |--|---|---|--|--|--|--|---|---|--|---|----------|----------|------| | 111212121212121213131313131313131313131 | 07 60
07 30
09 30
10 30
11 30
12 30
14 120
15 30 | 150055505050
 | 9414693028 | 19
14
14
14
19
19
19
19
19
19
19
19
19
19
19
19
19 | 37
28
14
14
14
34
71
40 | 215431406551 | 119
1416
159
422
181 | 109
1161
416
429
422
422
123 | 14987
15134
15209
153264
153396
153396
16554
16675 | 14723
14723
14754
14913
14961
15975
16153 | BIF-00 | 7/0-008 | 1-74 | | 1027
1028
1028
1029
1029
1035
1044
1044
1044 | 17 60
18 60
19 60
20 30
22 30
20
20
20
20
20
20
20
20
20
20
20
20
20 | 0500000500
-330000500
-3100 | 21
55
55
47
17
17
51
10 | 21
35
47
17
17
51
10 | 21
45
12
14
14
14
14 | 29059459045
31122145 | 116
454
149
1406
94
171
29 | 193
142
206
49
171
29 | 17728
17948
18011
18126
18326
18369
18412 | 16398
16626
16787
17007
17071
17194
17385
17428 | | | | | 1045655555555555555555555555555555555555 | 27 60
28 60
30 60
31 30
32 60
33 90
33 60
35 60
37 60 | Seasonon and a | ZEZELLAZELA | 44819012314 | 226658296777
3377 | 29
36
36
37
37
37
37 | 1375521218
1575521218
31768 | 154
171
55
332
121
72 | 19345
19726
19903
20012 | 18253
18327
18412
18801 | | | , | | 1062 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 38 600
3200
340 300
3442 300
442 900
445 30 | -30
35
35
35
35
35
35
35
35
35
35
35
35
35 | 1223 234462 | 12237034562 | 37
39
32
13
14
36
48
13 | 36
13
13
13
13
13
14
14
14
14
14
14 | 88
167
90
295
295
356
175 | 160
67
90
20
29
105
356
26 | 20429
20525
20628
20662 | 19498
19584
19687
19724
19764
19915
20335
20393
20424 | | | | | 1077 5
1077 5
1077 5
1078 5
1078 5
1078 5 | 48 6C
49 6C
5C 3C
51 6C
52 6C
53 3C
54 5C | THE SHEET | 262007175
101101175 | 36220017135 | 20
38
22
36
23
23
23
23
23
25
25
25
25
25
25
25
25
25
25
25
25
25 | 25
32
31
34
24
27
27 | 176
32
55
55
49
204
30
203 | 176
88
32
55
55
49
32
204 | 21609
21735
21796
21873
21964
22041
22086
2210
22428 | 2C677
2C8C1
2C855
2C941
21030
21099
21145
21376 | | | | | C0513 | マ 7 フ 8 1 | / | | | | | | | | | | | 4 | |----------------|-----------|------------|----|----|-----|--------|-----------|----------|-----------|-----------|--|---------|-------------| | COST | ,, | - , | | | | Approv | ed for Re | lease: 2 | 025/06/18 | C05137282 | BIF-0 | 07/D÷00 | 81-74 | | 1 05C 55 | 7 60 - | -15 | 45 | 45 | 37 | 37 | 248 | 248 | 22713 | 2 781 | **** ********************************* | | 7 | | 2090 55 | 8 30 | 3 C | 13 | 13 | 29 | 20 | 38 | 3.8 | 2278C | 21839 | | | - | | 1092 55 | 9 90 | 0 | 62 | 62 | 34 | 5 C | 502 | 50 Z | 23316 | 22391 | U. | TAB | San Lan San | | : 93 56 | 0 30 | 3 C | 7 | 7 | 48 | 32 | 20 | 20 | 23384 | 22443 | ПХ | IUI | ed in the | | 1)93 56 | 1 30 | 15 | 7 | 7 | 13 | 13 | 20 | 20 | 23417 | 22476 | ~ ~ ~ ~ | | | | 1094 56 | 2 60 | 15 | 52 | 52 | 20 | 28 | 286 | 286 | 23723 | 22790 | | | | | 1094 56 | 3 6C | 15 | 15 | 19 | 36 | 36 | 105 | 105 | 23864 | 22931 | | | | | 3 199 5£ | 4 3C | 0 | 5 | 5 | 28 | 2.0 | 15 | 15 | 23907 | 22966 | | | | | 1106 55 | 5 30 | 0 | 22 | 22 | 13 | 13 | 64 | 64 | 23584 | 23043 | | | | | 11C6 56 | 6 3C | 3 C | 14 | 14 | 13 | 13 | 41 | 41 | 24038 | 23097 | | | | | 1.06 56 | 7 30 - | -30 | 8 | 8 | 15 | 16 | 23 | 23 | 24C76 | 23136 | | | | | 1.08 56 | 8 9C | 0 | 37 | 37 | 34 | 49 | 300 | 30C | 2441C | 23485 | | | | | 1109 56 | 9 6C | C | 34 | 34 | 56 | 46 | 187 | 167 | 24653 | 23720 | | | | | 1.09 57 | 0 30 - | -15 | 10 | 10 | -28 | 21 | 29 | 29 | 2471C | 23770 | | | | | 1109 57 | 1 3C | 15 | 8 | 8 | 14 | 14 | 23 | 2.3 | 24747 | 23807 | | | | | 1169 57 | 2 3C | C | 16 | 16 | 14 | 14 | 46 | 46 | 24807 | 23867 | | | | | 3-09 57 | 3 3C · | -3C | 7 | 7 | 14 | 14 | 20 | 2 C | 24641 | 23901 | | | | | .09 57 | 4 3C · | -45 | 11 | 11 | 14 | 14 | 32 | 32 | 24887 | 23947 | | | | | 1110 57 | 5 3C | 3 C | 19 | 19 | 14 | 13 | 55 | 55 | 24956 | 24015 | | | | | 1110 57 | 6 6C | 30 | 9 | 9 | 22 | 29 | 5 C | 5 C | 25C28 | 24094 | | | | | 1.11 57 | 7 30 - | -15 | 65 | 65 | 29 | 23 | 187 | 188 | 25244 | 24305 | | | | 1208-4 B. CAMERA CPERATIONS SUMMARY REV 1111 OP 577 THROUGH REV 1694 OP 774 | ĸEV | MSN | SCA | SCC | FRAN | r E S | INTE | | PHOT | C-FT | CUM-TU | -FEET | |-------|-------|-----|-----|------|-------|------|-----|------|-------|---------|-------| | Proc. | NUM | | | FNC | AFT | | AFT | FHC | AFT | FWC | AFT | | 1_11 | 577 | 3 C | -15 | 13 | 13 | 0 | C | 36 | 35 | 36 | 35 | | 1122 | 578 | 3 C | -30 | 14 | 14 | 77 | 77 | 41 | 41 | 154 | 153 | | 1.22 | 579 | 3.0 | 3 C | 24 | 24 | 14 | 13 | 70 | 7 C | 238 | 236 | | 1 .23 | 580 | 30 | -30 | 14 | 14 | 14 | 15 | 41 | 41 | 293 | 292 | | 1123 | 581 | 3 (| 30 | 11 | 11 | 14 | 13 | 32 | 32 | 335 | 337 | | 1125 | 582 | 3 C | 3 C | î C | 2 C | 14 | 14 | 29 | 29 | 382 | 380 | | .25 | 583 | 3 C | 30 | 7 | 7 | 14 | 14 | 20 |
20 | 416 | 414 | | 1126 | 584 | 60 | 15 | 28 | 28 | 21 | 29 | 154 | 154 | 591 | 597 | | 1126 | 585 | 60 | -15 | 13 | 13 | 35 | 36 | 72 | 72 | 698 | 705 | | 7.30 | 586 | 3.0 | Č | 5 | 5 | 29 | 20 | 15 | 15 | 742 | 740 | | 2.39 | 587 | 90 | č | 43 | 43 | 33 | 49 | 348 | 348 | 1123 | 1137 | | 1141 | 5 8 8 | 90 | 0 | 34 | 34 | 67 | 67 | 275 | 275 | 1465 | 1479 | | 7.41 | 589 | 3 C | -3C | 21 | Ž١ | 48 | 33 | 61 | 4. | 1574 | 1573 | | .42 | 59C | 30 | -30 | 10 | 10 | 1.4 | 14 | 29 | 29 | 1617 | 1616 | | 1142 | 551 | | -15 | 11 | 11 | 14 | 3.4 | 32 | 32 | 1663 | 1662 | | 1442 | 592 | 30 | -3C | 9 | 9 | 14 | 1.3 | 26 | 26 | 1703 | 1761 | | 142 | 553 | 3.0 | -30 | 12 | 12 | 13 | 14 | 35 | 35 | 1751 | 1750 | | 1142 | 554 | 3 C | C | 7 | 7 | 14 | 13 | 20 | žć | 1785 | 1783 | | 1148 | 595 | 5 C | -15 | 22 | 22 | 20 | 28 | 121 | 121 | 1926 | 1932 | | 7.48 | 596 | 3 C | -15 | 8 | 8 | 29 | 21 | 23 | 23 | 1978 | 1976 | | .55 | 597 | 60 | 3.0 | 7 | 7 | 21 | 28 | 39 | 39 | 2038 | 2043 | | 11.55 | 598 | 6Ĉ | Ō | 16 | 16 | 36 | 36 | 8.8 | 8.8 | 2162 | 2167 | | ₹57 | 599 | 3 C | -15 | 13 | 1.3 | 2.8 | 21 | 38 | 36 | 2228 | 2226 | | | 600 | 3.0 | -3C | 12 | 12 | 14 | 14 | 35 | 35 | 2277 | 2275 | | 1158 | 601 | 6.C | 15 | 26 | 26 | 21 | 2.8 | 143 | 143 | 2441 | 2446 | | 1158 | 6 C 2 | 6.0 | C | 13 | 13 | 36 | 3.7 | 72 | 7.2 | 2549 | 2555 | | 158 | 603 | 26 | 3 C | 4 | 4 | 28 | 19 | 1.2 | 12 | 2589 | 2586 | | .159 | 604 | 60 | 15 | 5 C | 50 | 21 | 29 | 275 | 275 | 2665 | 2890 | | 1164 | € C 5 | 60 | -15 | 10 | " C | 33 | 34 | 55 | 55 | 2973 | 2979 | | 1,67 | 606 | 60 | 15 | 19 | 19 | 32 | 3 C | 1,05 | 2 C 5 | 3109 | 3114 | | 159 | 607 | 3.0 | ٥ | 10 | 10 | 25 | 13 | 29 | 29 | 3163 | 3161 | | 1165 | 833 | 3 C | 15 | 11 | 11 | 13 | 12 | 32 | 32 | 3208 | 3205 | | -169 | 609 | 3 C | -3C | E | 5 | 13 | 14 | 15 | 1.5 | 3236 | 3234 | | 1.71 | ELC | 60 | -15 | 10 | 10 | 20 | 28 | 55 | 55 | 3311 | 3317 | | 1171 | 611 | 6 C | -15 | 24 | 34 | 3.5. | 35 | 187 | 187 | 3,533 | 3539 | | 1171 | 612 | é C | 15 | 7 | 7 | 37 | 36 | 3 9 | 35 | 3609 | 3614 | | 172 | 613 | 6 C | 15 | 6 | É | 36 | 36 | 3 3 | 33 | 3678 | 3683 | | £174 | 614 | 6 C | -15 | 4 | 4 | 35 | 36 | 2.2 | 22 | 3735 | 3741 | | 1174 | 615 | 3.0 | C | 19 | 19 | 27 | 18 | 55 | 55 | 3817 | 3814 | | 174 | 616 | 6 C | -15 | 14 | 14 | 20 | 30 | 77 | 7.7 | 3514 | 3921 | | 174 | 617 | 3 Ç | C | 8 | d | 25 | ZΟ | 2.3 | 23 | 3966 | 3964 | | 1180 | 618 | 30 | -30 | 26 | 26 | 13 | 13 | 75 | 75 | 4 C 5 4 | 4052 | | -180 | 615 | 3 C | -30 | 11 | 11 | 14 | 14 | 32 | 3.2 | 41CC | 4098 | 304 645 305 650 316 653 1317 654 1218 655 _319 657 1320 658 T320 659 321. 66C 1321 601 2-325,662 1332 664 1333 665 334 666 JBB4 667 1335 668 336 665 327 663 218 656 1309 651 O- -15 -3C -15 -15 -15 -3C -30 -30 3 C -15 6 C 3.C 6 C 6C 6 C 3.0 6.0 9.0 3.0 6 C -15 6 C 6 C 6C ic 15 122 122 E G 1 C 8.4 3C 5 C 9.250 22 10203 10017 178 10413 10243 116 10584 10407 94 10714 10536 28 10779 10502 116 10931 10753 671 11637 11459 130 10132 亞海州 1 60 1 Clarania DE GIVE | 2 81 | 353 | 3 C | 15 | 5 | 5 | 14 | 23 | 1.5 | 15 | 4129 | 4126 | |------------|-------|-----|-----|-------|--------|-----|-----|------|-----|------|---------| | 1183 | 621 | 3 C | 30 | 22 | 22 | 13 | 13 | 64 | 64 | 4206 | 4203 | | 1-87 | 622 | 6 C | 3.0 | 19 | 19 | 19 | 27 | 1.05 | 105 | 4330 | 4335 | | : .87 | 623 | 6 C | 15 | 2.5 | 25 | 35 | 35 | 138 | 138 | 4503 | 45C8 | | 1187 | 624 | 60 | 0 | 1 C | 1.0 | 36 | 36 | 55 | 55 | 4594 | 4599 | | 1189 | 625 | 6 C | 0 | 16 | 16 | 35 | 35 | 88 | 8 8 | 4717 | 4722 | | 1.90 | 626 | 60 | -15 | 27 | 27 | 34 | 3.5 | 149 | 145 | 490C | 4906 | | 1.90 | 627 | 6 C | 3 C | 13 | 13 | 35 | 34 | 72 | 72 | 5007 | 5012 | | 1190 | 628 | 6 C | -15 | 4 | 4 | 36 | 37 | 22 | 22 | 5065 | 5C71 | | .91 | 629 | 96 | a | 74 | 74 | 47 | 54 | 599 | 599 | 5711 | 5724 | | : 203 | 630 | 6Ċ | 15 | 10 | î, C | 54 | 46 | 55 | 55 | 5820 | 5825 | | 1207 | 631 | 60 | 0 | 7 | 7 | 36 | 37 | 39 | 39 | 5895 | 5901 | | -218 | 632 | 3.0 | C | .5 | 5 | 29 | 21 | 15 | 15 | 5939 | 5937 | | 220 | 633 | 6 ¢ | -15 | 15 | 19 | 20 | 27 | 105 | 165 | 6064 | 6069 | | 1221 | 634 | 60 | -15 | 11 | 11 | 32 | 3.3 | 61 | 61 | 6157 | 6163 | | 1221 | 635 | 6.0 | Ċ | 7 | 7 | 33 | 3.2 | 39 | 39 | 6229 | 6234 | | 223 | 636 | 60 | 3 C | 19 | 19 | 3.5 | 34 | 105 | 105 | 6365 | 6373 | | 23c | 6.3.7 | 9.0 | 0 | 10 | 10 | 46 | 55 | 81 | 21 | 6496 | 6509 | | 1236 | 638 | 60 | 15 | 25 | 25 | 54 | 46 | 138 | 138 | 6688 | 6693 | | 237 | 635 | 6¢ | 15 | 16 | 16 | 36 | 36 | 8.8 | 9.8 | 6812 | 6817 | | 245 | 640 | 60 | 15 | 1 C | 10 | 36 | 36 | 55 | 55 | 6903 | 6908 | | 1300 | 641 | 60 | C | 6 | 6 | 79 | 39 | 33 | 3.3 | 7C15 | 6980 | | 3-30C | 642 | 60 | 15 | 19 | C | 35 | ¢ | 105 | C | 7155 | 698C | | 302 | 643 | 3 C | -45 | 29 | 29 | 29 | 20 | 84 | 84 | 7268 | 7084 | | 1302 | 644 | 9 C | 15 | 22 | 22 | 34 | 49 | 178 | 178 | 748C | 7311 | | 1303 | 645 | 60 | 30 | 13 | 13 | 55 | 46 | 72 | 72 | 76C7 | 7429 | | 30.3 | 646 | 6 C | -15 | 1 C | 10 | 35 | 3.6 | 55 | 55 | 7697 | 7520 | | .363 | 647 | 60 | 15 | 22 | 22 | 3.6 | 36 | 121 | 121 | 7854 | 7577 | | 46 46 46 4 | | ~ * | | 4. 75 | 46.775 | | P | 4.7 | | -000 | 4 6 6 6 | Approved for Release: 2025/06/18 C05137282 | .C0 | 513 | 7282 | | | | Appro | ved for F | Release: | 2025/06/18 | 3 C05137282 | RIELOO | 7/D <u>-</u> 008 | L-74 | |-------|-------|----------|-------|------|-----|-------|-----------|----------|------------|-------------|--------|------------------|-------------| | 1 136 | 670 | 30 1 | 5 5 | 5 | 29 | 20 | 15 | | 11681 | | D11-00 | 77 D-000 | 1 - 7 + | | 1348 | 671 | 60 -19 | 5 14 | 14 | 20 | 29 | 77 | | 11778 | | | | ×10x 227 × | | 1349 | 6.72 | 6C -1 | 5 13 | 13 | 37 | 37 | 72 | 72 | 11887 | 11709 | 11 | TAD | CENT | | 149 | 673 | 6C (| 0 25 | 25 | 37 | 37 | 138 | 135 | | | TIA | 1 40 | DEV SIGN TO | | 1.350 | 674 | 6C -19 | 5 29 | 25 | 36 | 37 | 160 | | 12258 | | | | | | 1351 | 675 | 6C 1 | 5 16 | 16 | 37 | 36 | 88 | | 12383 | | 1 | | | | 364 | 676 | 30 -30 | 9 | 49 | 28 | 21 | 142 | | | 12368 | | | | | : 165 | 677 | 9.0 | 0 31 | 31 | 34 | 49 | 251 | 251 | 12838 | 12668 | | | | | 1366 | 678 | 90 (| 73 | 73 | 67 | 67 | 591 | 591 | 13496 | 13326 | | | | | .—166 | 679 | 9C (| 11 | 11 | 68 | 68 | 89 | 89 | 13653 | 13483 | | | | | 167 | 68€ | 30 30 | 45 | 45 | 48 | 32 | 131 | 131 | 13832 | 23646 | | | | | 1368 | 681 | 60 1 | 5 25 | 25 | 22 | 29 | 138 | 138 | 13992 | 13813 | | | | | 1365 | | 6C 1 | 5 89 | E 9- | 36 | 37 | 490 | 49¢ | 14518 | 14340 | | | | | 374 | | 3C 31 | 17 | 1.7 | 29 | 21 | 49 | 49 | 14596 | 14410 | | | | | 1375 | | | 3.8 | 3.6 | 21 | 29 | 209 | 209 | 14826 | 14648 | | | | | 1382 | 685 | | 22 | 22 | 48 | 5.6 | 178 | 178 | 15C52 | 14882 | | | | | . 382 | 686 | 6C 1 | | 21 | 57 | 45 | 116 | | 15225 | 15047 | | | | | 383 | 687 | 6C -19 | 5 14 | 14 | 36 | 37 | 7.7 | 7.7 | 15338 | 15161 | | | | | 1383 | 688 | 60 -15 | 5 13 | 13 | 37 | 3.7 | 72 | 72 | 15447 | 15270 | | | | | -184 | 669 | 6C 1 | 5 3 C | 3 G | 37 | 36 | 165 | 165 | 15649 | 15471 | | | | | 185 | | | 87 | 87 | 48 | 56 | 7.05 | | 16402 | 16232 | | | | | 1397 | 691 | 6C -1 | 5 14 | 14 | 56 | 4.8 | 77 | | | 16357 | | | | | 1397 | | 6C (| 2 15 | 15 | 37 | 37 | 83 | 8.3 | 16655 | 16477 | | | | | 399 | 6.93 | 3C -30 | | 13 | 29 | 22 | 38 | 38 | 16722 | 16537 | | | | | a400 | | 60 -1 | | 15 | 2.2 | 3 C | 83 | | 16827 | | | | | | 1401 | 695 | 60 -15 | | 13 | 3.8 | 37 | 72 | 72 | | | | | | | 101 | 696 | 30 30 | 33 | 33 | 29 | 21 | 96 | | 17062 | | | | | | ACL | 697 | 3C 1 | | 9 | 15 | 15 | 26 | | 17103 | | | | | | 1402 | 698 | 6.C 19 | 5 17 | 17 | ٤ŝ | 30 | 94 | | 1722C | | | | | | 1413 | 695 | | 3E C | 36 | 45 | 54 | 308 | | | 17403 | | | | | 415 | | 60 1 | | £ 6 | 50 | 42 | 143 | | 17766 | | | | | | 1416 | 701 | 6C -1! | | 9 | 33 | 34 | 5 C | | 17849 | | | | | | 1417 | 702 | | 34 | 3.4 | 44 | 51 | 275 | | 18168 | | | | | | 122 | 7 C 3 | 3(-3) | | Ş | 45 | 3.0 | 2.0 | | 18239 | | | | | | 429 | 704 | | 54 | 54 | 31 | 45 | 437 | | 18707 | | | | | | 1430 | 7 C 5 | | 5.0 | ž C | 66 | 6.6 | 405 | 405 | 19178 | | | | | | 7437 | 766 | 60 X | | 3 C | 54 | 46 | 165 | | 19397 | | | | | | 431 | 707 | | 5 | 5 | 27 | 19 | 15 | 15 | 19439 | | | | | | 1433 | 708 | | 5 9 | G: | 20 | 31 | 50 | | 19509 | | | | | | 445 | 709 | | 34 | 34 | 45 | 5.2 | 275 | 275 | 19829 | | | | | | 445 | 710 | 6C -15 | | 1.3. | 53 | 45 | 72 | 72 | 19954 | | | | | | 1449 | 711 | 60 31 | | 9. | 35 | 34 | 50 | | 20039 | | | | | | 1462 | 712 | | 3 13 | 13 | 3.6 | 36 | 72 | 72 | | | | | | | 456 | 713 | 60 15 | | 17 | 34 | 34 | 94 | | 20275 | | | | | | z 466 | 714 | 1 1-4 | 5 | 9 | 35 | 3.5 | 50 | | | 20183 | | | | | 1471 | 715 | | 16 | 16 | 48 | 5.6 | 130 | | 26538 | | | | | | 2.00 | 71/ | Z (2 9) | ୍ ପ୍ର | 7.5 | = 7 | 4.0 | 3 2 O | 9 3 0 | 10777 | つり 日 日 ム | | | | 57 36 28 14 25 13 9 10 25 13 9 a C 49 36 2 C 14 1471 715 481 716 715 482 717 1482 718 487 719 6.0 6 C 3.0 3 C -15 1,5 30 1,5 TOO CEROLE HA 138 20733 20556 72 20841 20664 26 20895 20710 29 20938 20753 138 72 26 29 BIF-007/D-0081-74 | | <i>780</i> | Carles Carles Same | |-----|------------|--------------------| | HIV | H WA | ed he was a last | | i i | | | | | | | | | | | Applo | ved for ite | sicase. 2 | 2023/00/10 | 00010720 | |---|-------|---------|-------|-----|-----|-----|-------|-------------|-----------|------------|----------| | 1 27 | 720 | 6 C | -15 | 14 | 14 | 22 | 31 | 77 | 77 | 21037 | 20861 | | 1497 | 721 | 3·C | -3C | 13 | 13 | 29 | 21 | 38 | 3.8 | 21164 | 20920 | | 7-33 | 722 | 30 | -30 | 12 | 12 | 14 | 14 | 35 | 35 | 21153 | 20969 | | | | | | | | | | | | | | | 1 11 | 723 | 6 C | C | 13 | 1.3 | 21 | 28 | 72 | 7.2 | 21246 | 21069 | | 1515 | 724 | 30 | -15 | Ģ | 9 | 2.8 | 21 | 26 | 2.6 | 21300 | 21116 | | 1515 | 725 | 3 C | 15 | 25 | 25 | 13 | 12 | 73 | 73 | 21386 | 21201 | | 1 31 | 726 | ó C | 15 | 36 | 36 | 21 | 28 | 198 | 198 | 21605 | 21427 | | 1335 | 727 | 3 C | -30 | 25 | 25 | 28 | 21 | 73 | 73 | 21706 | 21521 | | | | 30 | -30 | īí | | | | | | | | | 1536 | 728 | | | | 11 | 13 | 14
 32 | 32 | 21751 | 21567 | | 136 | 729 | 6 C | 15 | 3 C | 10 | 2.2 | 29 | 55 | 55 | 21828 | 21651 | | 146 | 730 | .6€ | -15 | 21 | 21 | 36 | 37 | 116 | 116 | 21980 | 21804 | | 1547 | 731 | 3 C | C | 15 | 15 | 28 | 20 | 44 | 44 | 22052 | 21868 | | .º552 | 732 | .3 C | C | 6 | 6 | 14 | 14 | 18 | 1.8 | 22C84 | 21900 | | 354 | 733 | 3 C | C | 8 | 8 | 14 | 14 | 23 | 23 | 22121 | 21937 | | 1559 | 734 | 60 | -15 | 47 | 47 | 21 | 29 | 259 | 259 | 22401 | 22225 | | | | | | | | | | | | | | | 156C | 735 | 3 C | 3.0 | ç | 9 | 30 | 20 | 26 | 26 | 22457 | 22271 | | 551 | 736 | 3 C | -15 | 5 | 5 | 13 | 15 | 15 | 15 | 22485 | 223C1 | | 1,562 | 737 | 60 | 0 | 19 | 19 | 20 | 27 | 105 | 105 | 22610 | 22433 | | 1563 | 738 | 90 | 0 | 3 C | 3 C | 45 | 54 | 243 | 243 | 22898 | 22730 | | 36€ | 739 | 6 C | -15 | 19 | 19 | 5.5 | 47 | 105 | 105 | 23058 | 22882 | | 559 | 74 C | 3 C | -30 | 7 | 7 | 29 | 21 | 20 | 20 | 23107 | 22923 | | 1570 | 741 | 100 000 | 1.00 | g | ģ | 22 | 29 | 50 | 5 C | 23179 | 23002 | | | | | | | | | | | | | | | *575 | 742 | 60 | 0 | 22 | 22 | 26 | 36 | 121 | 121 | 22326 | 23159 | | 576 | 743 | 3 C | C | 46 | 46 | 28 | 20 | 133 | 133 | 23487 | 23312 | | 1577 | 744 | 3 C | 3 C | 19 | 19 | 13 | 13 | 55 | 55 | 23555 | 23380 | | 1535 | 745 | 3 C | Ö | 6 | 6 | 13 | 13 | 1.7 | 17 | 23585 | 2341C | | 592 | 746 | 30 | 3.0 | 23 | 2.3 | 14 | 14 | 67 | 67 | 23666 | 23491 | | 4395 | 747 | 3.0 | 3.0 | 3 C | 3 C | 1.4 | 14 | 87 | 87 | 23767 | 23592 | | 1596 | 748 | 3 C | 30 | 2.3 | 23 | 13 | 13 | 67 | 67 | 23847 | 23672 | | 557 | 749 | 30 | 15 | | | | 15 | 15 | 15 | 23877 | 237C2 | | | | | | 5 | 5 | 15 | | | | | | | 507 | 75C | 3 C | -30 | 58 | 5.8 | 13 | 14 | 168 | 168 | 24058 | 23884 | | 1610 | 751 | 60 | 15 | 21 | 21 | 21 | 28 | 116 | ilt | 24195 | 24 C Z 8 | | 2012 | 752 | | · C | 7.8 | 7.8 | 47 | 55 | 632 | 632 | 24874 | 24715 | | 617 | 753 | 3.0 | 3.0 | 1.2 | 12 | 4.8 | 32 | 3.5 | 35 | 24957 | 24782 | | 1626 | 754 | 6 C | C | 22 | 12 | 21 | 25 | 6.6 | 66 | 25044 | 24877 | | 1428 | 755 | 90 | - 25 | 3.7 | 22 | 48 | 57 | 178 | 178 | 25270 | 25112 | | 643 | 156 | 3.0 | 15 | 6 | 6 | 50 | 33 | 1.7 | 1.7 | 25337 | 25162 | | 2633 | 757 | 30 | .a. 2 | 6 | 6 | 13 | 13 | 27 | 1.7 | 25367 | 25152 | | | | | | | | | | | | | | | 1635 | 758 | 3.0 | -15 | . 5 | 5 | 13 | 14 | 1.5 | 15 | 25395 | 25221 | | ~64 L | 755 | 6 C | -15 | ĺć | 16 | 17 | 25 | 83 | 3.9 | 25500 | 25334 | | 657 | 76C | 30 | 30 | 1.3 | 13 | 29 | 20 | 38 | 38 | 25567 | 25392 | | 1657 | 7.61 | 3 C | 1,5 | 8 | 8 | 14 | 15 | 2.3 | 23 | 25604 | 25430 | | 1 -658 | 762 | 60 | -15 | 14 | 14 | 2 Z | 3 C | 77 | 77 | 25703 | 25537 | | | 763 | 30 | -15 | 7 | 7 | 29 | 21 | 20 | | | 25578 | | 1667 | | | 15 | 5 | 5 | 14 | 14 | 15 | | 25781 | | | 1673 | | | -15 | | | | | | | | | | A 1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 3 C D | | | 12 | 12 | 21 | 29 | 66 | | 25868 | 257CZ | | 677 | 155 | 60 | Û | 15 | 15 | 37 | 36 | 83 | | 25588 | 25821 | | .678 | | | -3C | 5 | 5 | 28 | 22 | 15 | 15 | 26C31 | 25857 | | 1689 | | | 3.0 | C | 30 | C | 13 | G | | 26031 | | | Tésc | 765 | 3 C | -15 | 1.5 | 19 | 14 | 14 | 55 | 55 | 261CC | 26026 | | | | | | | | | | | | | | | CUSI3 / | | 10 | 3.0 | 14 | | | | 025/06/18 (
26143 | 26069 | BIF-0 | 07/D-00 | 31-74 | |----------|--------|----|-----|----|----|-----|-----|-----------------------------|-------|-------|---------|------------| | | | | _ | | - | | | - | | | | | | 1893 771 | 6C C | 1 | 7 | 22 | | | | 26204 | | | | | | 1693 772 | 3C -30 | 9 | 9: | 28 | 21 | 26 | 26 | 26258 | 26184 | LI. | TADA | CCCOCK | | 193 773 | SC C | 15 | 15 | 36 | 51 | 122 | 122 | 26416 | 26357 | HIX | 101 | JA CINE I | | _394 774 | | | | | | 185 | 167 | 26658 | 26573 | 1 | | | | | | | | 32 | 62 | | | 26690 | 26635 | - | | Mg/HAMMen- | | - | - 1 | | | | | | | | | | | |